Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
from transformers import pipeline, AutoTokenizer # Added AutoTokenizer | |
import torch | |
# --- Set Page Config FIRST --- | |
st.set_page_config(layout="wide") | |
# --- Configuration --- | |
# MODEL_NAME = "AdaptLLM/finance-LLM" # Old model | |
MODEL_NAME = "WiroAI/WiroAI-Finance-Qwen-1.5B" # New smaller model | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# --- Model Loading (Cached by Streamlit for efficiency) --- | |
def load_resources(): | |
"""Loads the tokenizer and the text generation pipeline.""" | |
if not HF_TOKEN: | |
st.warning("HF_TOKEN secret not found. Ensure the model is public or add the token to secrets.") | |
try: | |
st.info(f"Loading tokenizer for {MODEL_NAME}...") | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HF_TOKEN if HF_TOKEN else None) | |
st.success("Tokenizer loaded.") | |
# Determine device: Use GPU if available, otherwise CPU | |
# device_map="auto" might be problematic on CPU-only Spaces | |
# Start with device_map="auto", but fall back to explicit cpu if needed | |
device_map_setting = "auto" | |
# device = 0 if torch.cuda.is_available() else -1 # Alternative: explicit device | |
st.info(f"Loading model {MODEL_NAME}... (Using {device_map_setting}) This might take a while.") | |
# Use pipeline | |
generator = pipeline( | |
"text-generation", | |
model=MODEL_NAME, | |
tokenizer=tokenizer, # Pass loaded tokenizer | |
model_kwargs={"torch_dtype": torch.bfloat16}, # Use bfloat16 as per model card | |
device_map=device_map_setting, | |
# device=device # Use this if device_map causes issues | |
trust_remote_code=True | |
) | |
st.success(f"Model {MODEL_NAME} loaded successfully!") | |
return generator, tokenizer # Return both | |
except Exception as e: | |
st.error(f"Error loading model/tokenizer: {e}", icon="π₯") | |
st.error("Check memory limits, token access, or try removing device_map='auto'.") | |
st.stop() | |
# --- Load Resources --- | |
generator, tokenizer = load_resources() | |
# --- Streamlit App UI --- | |
st.title("π° FinBuddy Assistant") | |
st.caption(f"Model: {MODEL_NAME}") | |
if "messages" not in st.session_state: | |
# Add initial system message (as per model card example) | |
st.session_state.messages = [ | |
{"role": "system", "content": "You are a finance chatbot developed by Wiro AI"} | |
] | |
# Display past chat messages (excluding system message) | |
for message in st.session_state.messages: | |
if message["role"] != "system": # Don't display system message | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Get user input | |
if prompt := st.chat_input("Ask a question about finance..."): | |
# Add user prompt to state and display | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Generate assistant response | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
message_placeholder.markdown("Thinking...β³") | |
# --- Prepare prompt for the model (use message history) --- | |
# Use the messages stored in session state (includes system prompt) | |
messages_for_api = st.session_state.messages | |
# --- Define terminators as per model card --- | |
terminators = [ | |
tokenizer.eos_token_id, | |
tokenizer.convert_tokens_to_ids("<|end_of_text|>") # Qwen uses <|end_of_text|> usually | |
] | |
# Handle potential errors if the specific token doesn't exist | |
terminators = [term for term in terminators if term is not None and not isinstance(term, list)] # Filter out None or lists if conversion fails | |
try: | |
# Generate response using the pipeline | |
outputs = generator( | |
messages_for_api, # Pass the list of messages | |
max_new_tokens=512, | |
eos_token_id=terminators, | |
pad_token_id=tokenizer.eos_token_id, # Use EOS for padding | |
do_sample=True, | |
temperature=0.7, # Adjusted slightly from example | |
top_p=0.95, # Added common param | |
# top_k=50 # Optional parameter | |
) | |
# --- Extract response --- | |
# The output format is a list containing a dictionary with 'generated_text' | |
# which itself is a list of message dictionaries. | |
if (outputs and | |
isinstance(outputs, list) and | |
len(outputs) > 0 and | |
isinstance(outputs[0], dict) and | |
'generated_text' in outputs[0] and | |
isinstance(outputs[0]['generated_text'], list) and | |
len(outputs[0]['generated_text']) > 0): | |
# Get the last message dictionary in the generated list (should be the assistant's reply) | |
last_message = outputs[0]['generated_text'][-1] | |
if isinstance(last_message, dict) and last_message.get('role') == 'assistant': | |
assistant_response = last_message.get('content', "").strip() | |
else: | |
# Fallback if format is unexpected - try getting last element's text if it's a string? | |
assistant_response = str(outputs[0]['generated_text'][-1]).strip() | |
if not assistant_response: | |
assistant_response = "I generated an empty response." | |
else: | |
print("Unexpected output format:", outputs) # Log for debugging | |
assistant_response = "Sorry, I couldn't parse the response format." | |
message_placeholder.markdown(assistant_response) | |
st.session_state.messages.append({"role": "assistant", "content": assistant_response}) | |
except Exception as e: | |
error_message = f"Error during text generation: {e}" | |
st.error(error_message, icon="π₯") | |
message_placeholder.markdown("Sorry, an error occurred generating the response.") | |
st.session_state.messages.append({"role": "assistant", "content": f"[Error: {e}]"}) |