finbuddy / app.py
Ani07-05
Switch to WiroAI-Finance-Qwen-1.5B model
7b9bc7a
import streamlit as st
import os
from transformers import pipeline, AutoTokenizer # Added AutoTokenizer
import torch
# --- Set Page Config FIRST ---
st.set_page_config(layout="wide")
# --- Configuration ---
# MODEL_NAME = "AdaptLLM/finance-LLM" # Old model
MODEL_NAME = "WiroAI/WiroAI-Finance-Qwen-1.5B" # New smaller model
HF_TOKEN = os.environ.get("HF_TOKEN")
# --- Model Loading (Cached by Streamlit for efficiency) ---
@st.cache_resource
def load_resources():
"""Loads the tokenizer and the text generation pipeline."""
if not HF_TOKEN:
st.warning("HF_TOKEN secret not found. Ensure the model is public or add the token to secrets.")
try:
st.info(f"Loading tokenizer for {MODEL_NAME}...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_auth_token=HF_TOKEN if HF_TOKEN else None)
st.success("Tokenizer loaded.")
# Determine device: Use GPU if available, otherwise CPU
# device_map="auto" might be problematic on CPU-only Spaces
# Start with device_map="auto", but fall back to explicit cpu if needed
device_map_setting = "auto"
# device = 0 if torch.cuda.is_available() else -1 # Alternative: explicit device
st.info(f"Loading model {MODEL_NAME}... (Using {device_map_setting}) This might take a while.")
# Use pipeline
generator = pipeline(
"text-generation",
model=MODEL_NAME,
tokenizer=tokenizer, # Pass loaded tokenizer
model_kwargs={"torch_dtype": torch.bfloat16}, # Use bfloat16 as per model card
device_map=device_map_setting,
# device=device # Use this if device_map causes issues
trust_remote_code=True
)
st.success(f"Model {MODEL_NAME} loaded successfully!")
return generator, tokenizer # Return both
except Exception as e:
st.error(f"Error loading model/tokenizer: {e}", icon="πŸ”₯")
st.error("Check memory limits, token access, or try removing device_map='auto'.")
st.stop()
# --- Load Resources ---
generator, tokenizer = load_resources()
# --- Streamlit App UI ---
st.title("πŸ’° FinBuddy Assistant")
st.caption(f"Model: {MODEL_NAME}")
if "messages" not in st.session_state:
# Add initial system message (as per model card example)
st.session_state.messages = [
{"role": "system", "content": "You are a finance chatbot developed by Wiro AI"}
]
# Display past chat messages (excluding system message)
for message in st.session_state.messages:
if message["role"] != "system": # Don't display system message
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Get user input
if prompt := st.chat_input("Ask a question about finance..."):
# Add user prompt to state and display
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
# Generate assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty()
message_placeholder.markdown("Thinking...⏳")
# --- Prepare prompt for the model (use message history) ---
# Use the messages stored in session state (includes system prompt)
messages_for_api = st.session_state.messages
# --- Define terminators as per model card ---
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|end_of_text|>") # Qwen uses <|end_of_text|> usually
]
# Handle potential errors if the specific token doesn't exist
terminators = [term for term in terminators if term is not None and not isinstance(term, list)] # Filter out None or lists if conversion fails
try:
# Generate response using the pipeline
outputs = generator(
messages_for_api, # Pass the list of messages
max_new_tokens=512,
eos_token_id=terminators,
pad_token_id=tokenizer.eos_token_id, # Use EOS for padding
do_sample=True,
temperature=0.7, # Adjusted slightly from example
top_p=0.95, # Added common param
# top_k=50 # Optional parameter
)
# --- Extract response ---
# The output format is a list containing a dictionary with 'generated_text'
# which itself is a list of message dictionaries.
if (outputs and
isinstance(outputs, list) and
len(outputs) > 0 and
isinstance(outputs[0], dict) and
'generated_text' in outputs[0] and
isinstance(outputs[0]['generated_text'], list) and
len(outputs[0]['generated_text']) > 0):
# Get the last message dictionary in the generated list (should be the assistant's reply)
last_message = outputs[0]['generated_text'][-1]
if isinstance(last_message, dict) and last_message.get('role') == 'assistant':
assistant_response = last_message.get('content', "").strip()
else:
# Fallback if format is unexpected - try getting last element's text if it's a string?
assistant_response = str(outputs[0]['generated_text'][-1]).strip()
if not assistant_response:
assistant_response = "I generated an empty response."
else:
print("Unexpected output format:", outputs) # Log for debugging
assistant_response = "Sorry, I couldn't parse the response format."
message_placeholder.markdown(assistant_response)
st.session_state.messages.append({"role": "assistant", "content": assistant_response})
except Exception as e:
error_message = f"Error during text generation: {e}"
st.error(error_message, icon="πŸ”₯")
message_placeholder.markdown("Sorry, an error occurred generating the response.")
st.session_state.messages.append({"role": "assistant", "content": f"[Error: {e}]"})