Spaces:
Sleeping
Sleeping
File size: 4,029 Bytes
f28182b 2bdb6e7 17fbb4c f28182b c07521b 17fbb4c c07521b f28182b e8d96cd 17fbb4c f28182b 2bdb6e7 f28182b 0170dd9 f28182b a7a3f3d f28182b e2fe7bb f28182b 5db9fc0 f28182b 52eb555 f28182b 2bdb6e7 52eb555 2bdb6e7 f28182b 2bdb6e7 f28182b c07521b dd914c7 a3e66d1 dd914c7 f28182b 06c5681 0462614 c07521b dd914c7 0462614 e7a5418 f28182b 06c5681 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
from langchain.prompts import StringPromptTemplate
import re
import langchain
from qa_txt import conversation_chain
from key_extract import chain
from bs4 import BeautifulSoup
import requests
from data_process import *
from langchain.tools.base import StructuredTool
from langchain.agents import initialize_agent
from qa_txt import llm
from trans import trans
import pathlib
import gradio as gr
from langchain.agents import (
create_react_agent,
AgentExecutor,
tool,
)
from langchain import hub
file_text = pathlib.Path('intents_v2.txt').read_text()
prompt = hub.pull("hwchase17/react")
def faq(query: str) -> str:
reponse = conversation_chain.invoke({"input": query})
return reponse
qa_faq = StructuredTool.from_function(
func = faq ,
description="""
Respond to general questions about the website like the documentation, contact, utility, support... Don't use it when the user request data about a subject (economie, justice, water, or any type of public dataset) only for contact or useful links data.
Parameters :
- query (string) : the same input as the user input no more no less and dont translate it even if it is in another language.
Returns :
- string : the output as returned from the function in french.
"""
)
def request_data(query: str) -> str:
request = chain.invoke({"input": query})
mot_cle = nettoyer_string(request)
mots = mot_cle.split()
ui = mots[0]
rg = chercher_data(ui)
if len(rg[0]):
reponse_final = format_reponse(rg)
return reponse_final
else:
return "Désolé, il semble que nous n'ayons pas de données correspondant à votre demande pour le moment. Avez-vous une autre question ou avez-vous besoin d'aide sur quelque chose d'autre?"
fetch_data = StructuredTool.from_function(
func=request_data,
description="""
Request and fetch data using a search keyword.
Parameters :
- query (string) : the same input as the user input no more no less and always it must be in french if it isn't already. For example : "give me data about health" the input is health in french which is santé, same for other languages and the words translatted must be nouns not adjectives or verbs also the user may request data about an organization where you need to take just the main subject for example "Je veux les données de l'agence de développement digitale" you take just "développement".
Returns :
- string : the output as returned from the function in french , includes the link to all the data about the keyword along with an example.
""",
)
def translate(query: str) -> str:
translated = trans.invoke({"input": query})['text']
return translated
translate_text = StructuredTool.from_function(
func=translate,
description= """
Translate from any language to french. Don't use it if the text is already in french
Parameters :
- query (string) : the same input as the user input no more no less.
Returns :
- string : isolate just the translated text in french with no other useless words.
""",
)
tools_add = [
qa_faq,
fetch_data,
translate_text,
]
agent = create_react_agent(llm=llm, tools=tools_add, prompt=prompt)
agent_executor = AgentExecutor(
agent=agent,
tools=tools_add,
verbose=True,
max_iterations = 10,
#max_execution_time = 45, optionel mais useful dans le deployement
)
def data_gov_ma(message, history):
try:
response = agent_executor.invoke({"input": message})
final_response = response['output']
timeout_iteration_error = 'Agent stopped due to iteration limit or time limit.'
if final_response == timeout_iteration_error:
return "Je suis désolé, je n'ai pas compris votre question.Pourriez-vous la reformuler s'il vous plaît ?"
else:
return final_response
except ValueError as e:
return "Je suis désolé, je n'ai pas compris votre question.Pourriez-vous la reformuler s'il vous plaît ?"
gr.ChatInterface(data_gov_ma).launch() |