import streamlit as st from transformers import T5Tokenizer, T5ForConditionalGeneration tokenizer = T5Tokenizer.from_pretrained("jokes-tokenizer") @st.cache def load_model(): model = T5ForConditionalGeneration.from_pretrained("jokes-model") return model model = load_model() def infer(input_ids): output_sequences = model.generate(input_ids=input_ids) return tokenizer.decode(output_sequences[0], skip_special_tokens=True) st.title("Stupid jokes with transformers") st.write("Write a question you want to see a funny answer for.") sent = st.text_area("Text", height = 100) if sent: max_source_length = 64 max_target_length = 32 prefix = "Answer the following question in a funny way: " input_ids = tokenizer(prefix + sent, max_length=max_source_length, truncation=True, return_tensors="pt").input_ids generated_sequence = infer(input_ids) st.write(generated_sequence)