Spaces:
Running
Running
File size: 19,062 Bytes
878d3d4 c25723f 0e69295 c25723f 0e69295 878d3d4 0e69295 fb20f92 c25723f 96c0d7e 3ea8b5d 0e69295 c25723f 0e69295 96c0d7e c25723f 0e69295 878d3d4 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 c25723f 0e69295 c25723f 0e69295 c25723f 0e69295 c25723f 0e69295 c25723f 0e69295 a74963a 0e69295 a74963a c25723f 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 c25723f 0e69295 96c0d7e 878d3d4 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 a74963a 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 96c0d7e 0e69295 878d3d4 0e69295 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
import os
import re
import time
import math
import tempfile
import random
import shutil
import torch
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from gtts import gTTS
import whisper # Ensure this is openai-whisper in requirements.txt
import gradio as gr
import requests
import json
from moviepy.editor import (
VideoFileClip, concatenate_videoclips, AudioFileClip,
CompositeVideoClip, TextClip, CompositeAudioClip, ColorClip
)
import logging
# Set up logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Global Configuration Variables
OPENROUTER_API_KEY = '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'
OPENROUTER_MODEL = "google/gemini-2.0-flash-exp:free"
TARGET_RESOLUTION = (1080, 1920) # Vertical format for shorts
OUTPUT_VIDEO_FILENAME = "final_video.mp4"
TEMP_FOLDER = None
CAPTION_COLOR = "white"
# Additional global variables for Gradio interface
selected_voice = 'en_us_001' # Default voice
voice_speed = 1.0 # Default voice speed
font_size = 45 # Default font size
bg_music_volume = 0.08 # Default background music volume
fps = 30 # Default FPS
preset = "veryfast" # Default preset
# Initialize whisper model globally
whisper_model = None
def load_whisper_model():
"""Load the Whisper model."""
global whisper_model
try:
logger.info("Loading Whisper model...")
whisper_model = whisper.load_model("tiny") # Using tiny for CPU efficiency
logger.info("Whisper model loaded successfully")
return True
except Exception as e:
logger.error(f"Failed to load Whisper model: {e}")
return False
def generate_script(user_input):
"""Generate documentary script using OpenRouter API."""
headers = {
'Authorization': f'Bearer {OPENROUTER_API_KEY}',
'HTTP-Referer': 'https://huggingface.co/spaces',
'X-Title': 'AI Documentary Maker'
}
prompt = f"""You're a professional documentary narrator. Your job is to write a serious, natural, and informative video script based on one topic.
The script should sound like a real human voiceover from a TV show or documentary β clear, factual, and engaging, like something you'd hear on National Geographic or a news report.
Structure:
- Break the script into scenes using [Tags]. Each tag is a short title (1β2 words) that describes the scene.
- Under each tag, write one sentence (max 12 words) that fits the tag and continues the topic.
- The full script should make sense as one connected narration β no randomness.
- Use natural, formal English. No slang, no fake AI language, and no robotic tone.
- Do not use humor, sarcasm, or casual language. This is a serious narration.
- No emotion-sound words like "aww," "eww," "whoa," etc.
- Do not use numbers like 1, 2, 3 β write them out as one, two, three.
- Make the total narration about 1 minute long (around 150-200 words total).
- At the end, add a [Subscribe] tag with a formal or respectful reason to follow or subscribe.
Only output the script. No extra comments or text.
Example:
[Ocean]
The ocean covers over seventy percent of the Earth's surface.
[Currents]
Ocean currents distribute heat and regulate global climate patterns.
[Coral Reefs]
These ecosystems support over one million species of marine life.
[Pollution]
Plastic waste threatens marine biodiversity and food chains.
[Climate Impact]
Rising temperatures are causing coral bleaching and habitat loss.
[Subscribe]
Follow to explore more about the changing planet we live on.
Now here is the Topic: {user_input}
"""
data = {
'model': OPENROUTER_MODEL,
'messages': [{'role': 'user', 'content': prompt}],
'temperature': 0.4,
'max_tokens': 2000
}
try:
response = requests.post(
'https://openrouter.ai/api/v1/chat/completions',
headers=headers,
json=data,
timeout=30
)
if response.status_code == 200:
response_data = response.json()
if 'choices' in response_data and len(response_data['choices']) > 0:
return response_data['choices'][0]['message']['content']
else:
logger.error(f"Unexpected response format: {response_data}")
return None
else:
logger.error(f"API Error {response.status_code}: {response.text}")
return None
except Exception as e:
logger.error(f"Request failed: {str(e)}")
return None
def parse_script(script_text):
"""Parse the generated script into a list of elements."""
sections = {}
current_title = None
current_text = ""
try:
for line in script_text.splitlines():
line = line.strip()
if line.startswith("[") and "]" in line:
bracket_start = line.find("[")
bracket_end = line.find("]", bracket_start)
if bracket_start != -1 and bracket_end != -1:
if current_title is not None:
sections[current_title] = current_text.strip()
current_title = line[bracket_start+1:bracket_end]
current_text = line[bracket_end+1:].strip()
elif current_title:
current_text += line + " "
if current_title:
sections[current_title] = current_text.strip()
elements = []
for title, narration in sections.items():
if not title or not narration:
continue
media_element = {"type": "media", "prompt": title, "effects": "fade-in"}
words = narration.split()
duration = max(3, len(words) * 0.5) # Estimate duration
tts_element = {"type": "tts", "text": narration, "voice": "en", "duration": duration}
elements.append(media_element)
elements.append(tts_element)
return elements
except Exception as e:
logger.error(f"Error parsing script: {e}")
return []
def generate_tts(text, voice="en"):
"""Generate TTS audio using gTTS."""
safe_text = re.sub(r'[^\w\s-]', '', text[:10]).strip().replace(' ', '_')
file_path = os.path.join(TEMP_FOLDER, f"tts_{safe_text}.wav")
try:
logger.info(f"Generating TTS for: {text[:30]}...")
tts = gTTS(text=text, lang='en', slow=False)
mp3_path = os.path.join(TEMP_FOLDER, f"tts_{safe_text}.mp3")
tts.save(mp3_path)
# Convert MP3 to WAV
audio = AudioSegment.from_mp3(mp3_path)
if voice_speed != 1.0:
audio = audio._spawn(audio.raw_data, overrides={
"frame_rate": int(audio.frame_rate * voice_speed)
})
audio.export(file_path, format="wav")
os.remove(mp3_path)
logger.info(f"TTS saved to {file_path}")
return file_path
except Exception as e:
logger.error(f"TTS generation error: {e}")
return generate_silent_audio(duration=max(3, len(text.split()) * 0.5))
def generate_silent_audio(duration, sample_rate=24000):
"""Generate a silent WAV audio file."""
num_samples = int(duration * sample_rate)
silence = np.zeros(num_samples, dtype=np.float32)
silent_path = os.path.join(TEMP_FOLDER, f"silent_{int(time.time())}.wav")
sf.write(silent_path, silence, sample_rate)
logger.info(f"Silent audio generated: {silent_path}")
return silent_path
def analyze_audio_with_whisper(audio_path):
"""Use Whisper to generate word-level timestamps."""
try:
if whisper_model is None:
load_whisper_model()
logger.info(f"Analyzing audio with Whisper: {audio_path}")
result = whisper_model.transcribe(audio_path, word_timestamps=True)
word_segments = []
for segment in result["segments"]:
for word in segment["words"]:
word_segments.append({
"word": word["word"].strip(),
"start": word["start"],
"end": word["end"]
})
logger.info(f"Extracted {len(word_segments)} word segments")
return word_segments
except Exception as e:
logger.error(f"Whisper analysis error: {e}")
return []
def get_video_clip_segment(video_path, start_time, duration):
"""Extract a random video segment."""
try:
video = VideoFileClip(video_path)
video_duration = video.duration
if duration > video_duration:
logger.warning(f"Requested duration ({duration}s) exceeds video length ({video_duration}s).")
return video
max_start_time = video_duration - duration
if start_time is None or start_time > max_start_time:
start_time = random.uniform(0, max_start_time)
clip = video.subclip(start_time, start_time + duration)
logger.info(f"Extracted video segment: {start_time:.2f}s to {start_time + duration:.2f}s")
return clip
except Exception as e:
logger.error(f"Error extracting video segment: {e}")
return None
def create_word_level_subtitles(clip, words_data, font_size=45):
"""Create synchronized subtitles without ImageMagick."""
try:
logger.info("Creating word-level synchronized subtitles")
chunks = []
current_chunk = []
current_chunk_words = []
for word_data in words_data:
current_chunk_words.append(word_data["word"])
current_chunk.append(word_data)
if len(current_chunk_words) >= 5:
chunks.append({
"text": " ".join(current_chunk_words),
"words": current_chunk,
"start": current_chunk[0]["start"],
"end": current_chunk[-1]["end"]
})
current_chunk = []
current_chunk_words = []
if current_chunk_words:
chunks.append({
"text": " ".join(current_chunk_words),
"words": current_chunk,
"start": current_chunk[0]["start"],
"end": current_chunk[-1]["end"]
})
subtitle_clips = []
for chunk in chunks:
txt_clip = TextClip(
chunk["text"],
fontsize=font_size,
color=CAPTION_COLOR,
method='label'
)
bg_clip = ColorClip(
size=(txt_clip.w + 20, txt_clip.h + 10),
color=(0, 0, 0, 128) # Semi-transparent black
)
subtitle_clip = CompositeVideoClip([
bg_clip.set_position('center'),
txt_clip.set_position('center')
])
subtitle_clip = subtitle_clip.set_start(chunk["start"]).set_end(chunk["end"]).set_position(('center', TARGET_RESOLUTION[1] * 0.85))
subtitle_clips.append(subtitle_clip)
logger.info(f"Created {len(subtitle_clips)} subtitle chunks")
return subtitle_clips
except Exception as e:
logger.error(f"Error creating subtitles: {e}")
return []
def add_background_music(final_video, bg_music_volume=0.08):
"""Add background music to the video."""
try:
bg_music_path = "music.mp3"
if bg_music_path and os.path.exists(bg_music_path):
logger.info(f"Adding background music from: {bg_music_path}")
bg_music = AudioFileClip(bg_music_path)
if bg_music.duration < final_video.duration:
loops_needed = math.ceil(final_video.duration / bg_music.duration)
bg_segments = [bg_music] * loops_needed
bg_music = CompositeAudioClip(bg_segments)
bg_music = bg_music.subclip(0, final_video.duration)
bg_music = bg_music.volumex(bg_music_volume)
video_audio = final_video.audio
mixed_audio = CompositeAudioClip([video_audio, bg_music])
final_video = final_video.set_audio(mixed_audio)
logger.info("Background music added successfully")
else:
logger.info("No music file found, skipping background music")
return final_video
except Exception as e:
logger.error(f"Error adding background music: {e}")
return final_video
def create_clip(tts_path, narration_text, segment_index=0):
"""Create a video clip with synchronized subtitles."""
try:
logger.info(f"Creating clip #{segment_index} with TTS: {tts_path}")
if not os.path.exists(tts_path) or not os.path.exists("video.mp4"):
logger.error("Missing video or TTS file")
return None
audio_clip = AudioFileClip(tts_path)
audio_duration = audio_clip.duration
target_duration = audio_duration + 0.5
video_clip = get_video_clip_segment("video.mp4", None, target_duration)
if video_clip is None:
logger.error("Failed to extract video segment")
return None
video_clip = video_clip.resize(height=TARGET_RESOLUTION[1], width=TARGET_RESOLUTION[0])
video_clip = video_clip.set_audio(audio_clip)
word_data = analyze_audio_with_whisper(tts_path)
if word_data:
subtitle_clips = create_word_level_subtitles(video_clip, word_data, font_size)
if subtitle_clips:
video_clip = CompositeVideoClip([video_clip] + subtitle_clips)
else:
logger.warning("Falling back to basic subtitles")
txt_clip = TextClip(
narration_text,
fontsize=font_size,
color=CAPTION_COLOR,
method='label'
)
bg_clip = ColorClip(
size=(txt_clip.w + 20, txt_clip.h + 10),
color=(0, 0, 0, 128)
)
subtitle_clip = CompositeVideoClip([
bg_clip.set_position('center'),
txt_clip.set_position('center')
])
subtitle_clip = subtitle_clip.set_duration(video_clip.duration).set_position(('center', TARGET_RESOLUTION[1] * 0.85))
video_clip = CompositeVideoClip([video_clip, subtitle_clip])
logger.info(f"Clip created: {video_clip.duration:.1f}s")
return video_clip
except Exception as e:
logger.error(f"Error in create_clip: {str(e)}")
return None
def generate_video(user_input, resolution, caption_option):
"""Generate a video based on user input."""
global TEMP_FOLDER, CAPTION_COLOR
CAPTION_COLOR = "white" if caption_option == "Yes" else "transparent"
TEMP_FOLDER = tempfile.mkdtemp()
logger.info(f"Created temporary folder: {TEMP_FOLDER}")
if not os.path.exists("video.mp4"):
logger.error("video.mp4 not found")
return "Error: video.mp4 not found. Please upload a video file named 'video.mp4'."
load_whisper_model()
script = generate_script(user_input)
if not script:
shutil.rmtree(TEMP_FOLDER)
return "Failed to generate script."
logger.info("Generated Script:\n" + script)
elements = parse_script(script)
if not elements:
shutil.rmtree(TEMP_FOLDER)
return "Failed to parse script."
logger.info(f"Parsed {len(elements)//2} script segments.")
paired_elements = [(elements[i], elements[i + 1]) for i in range(0, len(elements), 2)]
if not paired_elements:
shutil.rmtree(TEMP_FOLDER)
return "No valid script segments generated."
clips = []
for idx, (media_elem, tts_elem) in enumerate(paired_elements):
logger.info(f"\nProcessing segment {idx+1}/{len(paired_elements)} with prompt: '{media_elem['prompt']}'")
tts_path = generate_tts(tts_elem['text'], tts_elem['voice'])
if not tts_path:
continue
clip = create_clip(tts_path, tts_elem['text'], idx)
if clip:
clips.append(clip)
if not clips:
shutil.rmtree(TEMP_FOLDER)
return "Failed to create any video clips."
logger.info("\nConcatenating clips...")
final_video = concatenate_videoclips(clips, method="compose")
final_video = add_background_music(final_video, bg_music_volume=bg_music_volume)
logger.info(f"Exporting final video to {OUTPUT_VIDEO_FILENAME}...")
final_video.write_videofile(OUTPUT_VIDEO_FILENAME, codec='libx264', fps=fps, preset=preset)
logger.info(f"Final video saved as {OUTPUT_VIDEO_FILENAME}")
shutil.rmtree(TEMP_FOLDER)
logger.info("Temporary files removed.")
return OUTPUT_VIDEO_FILENAME
def generate_video_with_options(user_input, caption_option, music_file, bg_vol, video_fps, video_preset, v_speed, caption_size):
"""Generate video with Gradio options."""
global voice_speed, font_size, bg_music_volume, fps, preset
voice_speed = v_speed
font_size = caption_size
bg_music_volume = bg_vol
fps = video_fps
preset = video_preset
if music_file is not None:
shutil.copy(music_file.name, "music.mp3")
logger.info(f"Uploaded music saved as: music.mp3")
return generate_video(user_input, "Short", caption_option)
def create_interface():
"""Create Gradio interface."""
iface = gr.Interface(
fn=generate_video_with_options,
inputs=[
gr.Textbox(label="Video Concept", placeholder="Enter your video concept here..."),
gr.Radio(["Yes", "No"], label="Show Captions", value="Yes"),
gr.File(label="Upload Background Music (MP3)", file_types=[".mp3"]),
gr.Slider(0.0, 1.0, value=0.08, step=0.01, label="Background Music Volume"),
gr.Slider(10, 60, value=30, step=1, label="Video FPS"),
gr.Dropdown(choices=["ultrafast", "superfast", "veryfast", "faster", "fast", "medium", "slow"],
value="veryfast", label="Export Preset"),
gr.Slider(0.75, 1.25, value=1.0, step=0.05, label="Voice Speed"),
gr.Slider(20, 100, value=45, step=1, label="Caption Font Size")
],
outputs=gr.Video(label="Generated Video"),
title="AI Documentary Video Generator",
description="""
Create short documentary videos with AI narration and synchronized captions.
1. Enter a topic or concept for your documentary
2. Optionally upload background music
3. Adjust settings as needed
4. Click submit and wait for video generation
NOTE: You must upload a file named 'video.mp4' to your Hugging Face Space.
"""
)
return iface
if __name__ == "__main__":
demo = create_interface()
demo.launch()
else:
demo = create_interface() |