tergel's picture
Update app.py
0c8db5a
raw
history blame
4.56 kB
import os
from collections.abc import Iterator
from threading import Thread
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# Token limits
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 512
# Description
DESCRIPTION = """\
# Demo for "Self-Training Elicits Concise Reasoning in Large Language Models"
This Space showcases the model [tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon](https://huggingface.co/tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon)
We provide a simple chat interface allowing you to observe the concise CoT solutions that our model can produce. Feel free to play with it.
"""
# Decide on device
device = "cuda" if torch.cuda.is_available() else "cpu"
if not torch.cuda.is_available():
DESCRIPTION += "\n\n<p>**Warning**: Running on CPU 🥶 – this may be extremely slow. We will upgrade to GPUs soon.</p>"
# Load model and tokenizer
model_id = "tergel/llama-3.2-3b-instruct-gsm8k-fs-gpt4o-bon"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=None if device == "cpu" else "auto",
torch_dtype=torch.bfloat16 if device == "cuda" else torch.float32,
)
model.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
chat_history: list[dict],
system_prompt: str = "",
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.7,
top_p: float = 0.95,
top_k: int = 40,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
# Build conversation
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
conversation += chat_history
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.7,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.95,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=40,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
[
"A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?"
],
[
"Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?"
],
[
"James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?"
],
],
cache_examples=False,
type="messages",
)
with gr.Blocks(css_paths="style.css", fill_height=True) as demo:
gr.Markdown(DESCRIPTION)
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()