Update app.py
Browse files
app.py
CHANGED
@@ -19,21 +19,24 @@ def predict_xray(image):
|
|
19 |
image = image.reshape(1, 150, 150, 3) / 255.0 # Normalization (if used in training)
|
20 |
|
21 |
# Make prediction
|
22 |
-
prediction = model.predict(image)
|
23 |
-
prediction = prediction.argmax() # Get class with highest probability
|
24 |
|
25 |
-
# Class labels
|
26 |
-
labels = ["Normal", "Pneumonia"]
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Create Gradio UI
|
31 |
iface = gr.Interface(
|
32 |
fn=predict_xray,
|
33 |
inputs=gr.Image(type="pil"), # Accepts image input
|
34 |
-
outputs="text", # Returns class label
|
35 |
title="Pneumonia Detection",
|
36 |
-
description="Upload a chest X-ray image, and the model will predict if the patient has pneumonia or is normal."
|
37 |
)
|
38 |
|
39 |
# Launch the app
|
|
|
19 |
image = image.reshape(1, 150, 150, 3) / 255.0 # Normalization (if used in training)
|
20 |
|
21 |
# Make prediction
|
22 |
+
prediction = model.predict(image)[0] # Get probabilities for both classes
|
|
|
23 |
|
24 |
+
# Class labels
|
25 |
+
labels = ["The Patient is Normal.", "The Patient has Pneumonia."]
|
26 |
|
27 |
+
# Get predicted class and confidence scores
|
28 |
+
predicted_class = np.argmax(prediction) # Class with highest probability
|
29 |
+
confidence = prediction[predicted_class] * 100 # Convert to percentage
|
30 |
+
|
31 |
+
return f"{labels[predicted_class]} ({confidence:.2f}% confidence)"
|
32 |
|
33 |
# Create Gradio UI
|
34 |
iface = gr.Interface(
|
35 |
fn=predict_xray,
|
36 |
inputs=gr.Image(type="pil"), # Accepts image input
|
37 |
+
outputs="text", # Returns class label with confidence
|
38 |
title="Pneumonia Detection",
|
39 |
+
description="Upload a chest X-ray image, and the model will predict if the patient has pneumonia or is normal, along with confidence scores."
|
40 |
)
|
41 |
|
42 |
# Launch the app
|