aiws / app.py
fikird
Improve content processing and result formatting
ae8bccc
raw
history blame
4.86 kB
import gradio as gr
from rag_engine import RAGEngine
import torch
import os
import logging
import traceback
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def safe_search(query, max_results):
"""Wrapper function to handle errors gracefully"""
try:
rag = RAGEngine()
results = rag.search_and_process(query, max_results)
if 'error' in results:
return f"# ❌ Error\nSorry, an error occurred while processing your search:\n```\n{results['error']}\n```"
return format_results(results)
except Exception as e:
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}"
logger.error(error_msg)
return f"# ❌ Error\nSorry, an error occurred while processing your search:\n```\n{str(e)}\n```"
def format_results(results):
"""Format search results for display"""
if not results or not results.get('results'):
return "# ⚠️ No Results\nNo search results were found. Please try a different query."
insights = results.get('insights', {})
output = []
# Main Summary
output.append("πŸ“ Executive Summary")
output.append("-" * 50)
output.append(insights.get('main_summary', ''))
output.append("\n")
# Key Findings
output.append("πŸ”‘ Key Findings")
output.append("-" * 50)
for i, point in enumerate(insights.get('key_findings', []), 1):
output.append(f"{i}. {point}")
output.append("\n")
# Sources
output.append("πŸ“š Sources")
output.append("-" * 50)
for source in insights.get('sources', []):
output.append(f"β€’ {source.get('title', '')}")
output.append(f" {source.get('url', '')}")
output.append("\n")
# Follow-up Questions
output.append("❓ Suggested Questions")
output.append("-" * 50)
for question in results.get('follow_up_questions', []):
output.append(f"β€’ {question}")
# Add main results
if 'results' in results:
output.append("\n")
output.append("πŸ“„ Detailed Results")
output.append("-" * 50)
output.append("\n")
for i, result in enumerate(results['results'], 1):
if not isinstance(result, dict):
continue
output.append(f"### {i}. ")
if 'url' in result:
title = result.get('title', 'Untitled')
output.append(f"[{title}]({result['url']})\n")
if 'summary' in result:
output.append(f"\n{result['summary']}\n\n")
# Add similar chunks if available
if 'similar_chunks' in results:
output.append("\n")
output.append("πŸ” Related Content")
output.append("-" * 50)
output.append("\n")
for i, chunk in enumerate(results['similar_chunks'], 1):
if not isinstance(chunk, dict):
continue
output.append(f"### Related {i}\n")
if 'metadata' in chunk:
meta = chunk['metadata']
if 'title' in meta and 'url' in meta:
output.append(f"From [{meta['title']}]({meta['url']})\n")
if 'content' in chunk:
output.append(f"\n{chunk['content'][:200]}...\n\n")
return "\n".join(output)
def create_demo():
"""Create the Gradio interface"""
with gr.Blocks(title="Web Search + RAG") as demo:
gr.Markdown("# πŸ” Intelligent Web Search")
gr.Markdown("Search the web with AI-powered insights and analysis.")
with gr.Row():
with gr.Column():
query = gr.Textbox(
label="Search Query",
placeholder="Enter your search query...",
lines=2
)
max_results = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of Results"
)
search_button = gr.Button("πŸ” Search")
output = gr.Textbox(
label="Search Results",
lines=20
)
search_button.click(
fn=safe_search,
inputs=[query, max_results],
outputs=output
)
gr.Examples(
examples=[
["What is RAG in AI?", 5],
["Latest developments in quantum computing", 3],
["How does BERT work?", 5]
],
inputs=[query, max_results]
)
return demo
# Create the demo
demo = create_demo()
# Launch for Spaces
demo.launch()