Spaces:
Build error
Build error
import gradio as gr | |
from rag_engine import RAGEngine | |
import torch | |
import os | |
import logging | |
import traceback | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
def safe_search(query, max_results): | |
"""Wrapper function to handle errors gracefully""" | |
try: | |
rag = RAGEngine() | |
results = rag.search_and_process(query, max_results) | |
if 'error' in results: | |
return f"# β Error\nSorry, an error occurred while processing your search:\n```\n{results['error']}\n```" | |
return format_results(results) | |
except Exception as e: | |
error_msg = f"An error occurred: {str(e)}\n\nTraceback:\n{traceback.format_exc()}" | |
logger.error(error_msg) | |
return f"# β Error\nSorry, an error occurred while processing your search:\n```\n{str(e)}\n```" | |
def format_results(results): | |
"""Format search results into a clean markdown output""" | |
if 'error' in results: | |
return f"β Error: {results['error']}" | |
output = [] | |
# Add insights section | |
if 'insights' in results: | |
insights = results['insights'] | |
output.append("# π― Key Insights\n") | |
if 'summary' in insights: | |
output.append(insights['summary']) | |
output.append("\n") | |
if 'key_points' in insights and len(insights['key_points']) > 5: | |
output.append("\n## π Additional Points\n") | |
for point in insights['key_points'][5:]: | |
output.append(f"β’ {point}") | |
output.append("\n") | |
# Add sources section | |
if 'insights' in results and 'sources' in results['insights']: | |
output.append("\n# π Sources\n") | |
for idx, source in enumerate(results['insights']['sources'], 1): | |
output.append(f"\n## {idx}. {source['title']}\n") | |
if 'url' in source: | |
output.append(f"π [View Source]({source['url']})\n") | |
if 'summary' in source: | |
output.append(f"\n{source['summary']}\n") | |
# Add follow-up questions | |
if 'follow_up_questions' in results: | |
output.append("\n# β Suggested Questions\n") | |
for question in results['follow_up_questions']: | |
output.append(f"β’ {question}\n") | |
return "\n".join(output) | |
def create_demo(): | |
"""Create the Gradio interface""" | |
with gr.Blocks(title="Web Search + RAG") as demo: | |
gr.Markdown("# π Intelligent Web Search") | |
gr.Markdown("Search the web with AI-powered insights and analysis.") | |
with gr.Row(): | |
with gr.Column(): | |
query = gr.Textbox( | |
label="Search Query", | |
placeholder="Enter your search query...", | |
lines=2 | |
) | |
max_results = gr.Slider( | |
minimum=1, | |
maximum=10, | |
value=5, | |
step=1, | |
label="Number of Results" | |
) | |
search_button = gr.Button("π Search") | |
output = gr.Markdown( | |
label="Search Results", | |
show_label=True | |
) | |
search_button.click( | |
fn=safe_search, | |
inputs=[query, max_results], | |
outputs=output | |
) | |
gr.Examples( | |
examples=[ | |
["What is RAG in AI?", 5], | |
["Latest developments in quantum computing", 3], | |
["How does BERT work?", 5] | |
], | |
inputs=[query, max_results] | |
) | |
return demo | |
# Create the demo | |
demo = create_demo() | |
# Launch for Spaces | |
demo.launch() | |