Spaces:
Build error
Build error
File size: 5,887 Bytes
44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 d7b6953 44198e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
from typing import Dict, List, Any
import requests
from bs4 import BeautifulSoup
from duckduckgo_search import DDGS
from transformers import pipeline
from langchain_community.embeddings import HuggingFaceEmbeddings
import time
import json
import os
from urllib.parse import urlparse
class ModelManager:
"""Manages different AI models for specific tasks"""
def __init__(self):
self.device = "cpu"
self.models = {}
self.load_models()
def load_models(self):
# Use smaller models for CPU deployment
self.models['summarizer'] = pipeline(
"summarization",
model="facebook/bart-base",
device=self.device
)
self.models['embeddings'] = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": self.device}
)
class ContentProcessor:
"""Processes and analyzes different types of content"""
def __init__(self):
self.model_manager = ModelManager()
def process_content(self, content: str) -> Dict:
"""Process content and generate insights"""
try:
# Generate summary
summary = self.model_manager.models['summarizer'](
content[:1024],
max_length=100,
min_length=30,
do_sample=False
)[0]['summary_text']
return {
'summary': summary,
'content': content
}
except Exception as e:
return {
'summary': f"Error processing content: {str(e)}",
'content': content
}
class WebSearchEngine:
"""Main search engine class"""
def __init__(self):
self.processor = ContentProcessor()
self.session = requests.Session()
self.request_delay = 1.0
self.last_request_time = 0
self.ddgs = DDGS()
def is_valid_url(self, url: str) -> bool:
"""Check if URL is valid for crawling"""
try:
parsed = urlparse(url)
return bool(parsed.netloc and parsed.scheme)
except:
return False
def get_metadata(self, soup: BeautifulSoup) -> Dict:
"""Extract metadata from page"""
title = soup.title.string if soup.title else "No title"
description = ""
if soup.find("meta", attrs={"name": "description"}):
description = soup.find("meta", attrs={"name": "description"}).get("content", "")
return {
'title': title,
'description': description
}
def process_url(self, url: str) -> Dict:
"""Process a single URL"""
if not self.is_valid_url(url):
return {'error': f"Invalid URL: {url}"}
try:
# Rate limiting
current_time = time.time()
time_since_last = current_time - self.last_request_time
if time_since_last < self.request_delay:
time.sleep(self.request_delay - time_since_last)
response = self.session.get(url, timeout=10)
self.last_request_time = time.time()
if response.status_code != 200:
return {'error': f"Failed to fetch URL: {url}, status code: {response.status_code}"}
soup = BeautifulSoup(response.text, 'lxml')
# Extract text content
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
content = ' '.join(chunk for chunk in chunks if chunk)
# Get metadata
metadata = self.get_metadata(soup)
# Process content
processed = self.processor.process_content(content)
return {
'url': url,
'title': metadata['title'],
'description': metadata['description'],
'summary': processed['summary'],
'content': processed['content']
}
except Exception as e:
return {'error': f"Error processing {url}: {str(e)}"}
def search(self, query: str, max_results: int = 5) -> Dict:
"""Perform search and process results"""
try:
# Search using DuckDuckGo
search_results = list(self.ddgs.text(query, max_results=max_results))
results = []
for result in search_results:
if 'link' in result:
processed = self.process_url(result['link'])
if 'error' not in processed:
results.append(processed)
# Generate insights from results
all_content = " ".join([r['summary'] for r in results if 'summary' in r])
return {
'results': results,
'insights': all_content[:1000] if all_content else "No insights available.",
'follow_up_questions': [
f"What are the key differences between {query} and related topics?",
f"Can you explain {query} in simple terms?",
f"What are the latest developments in {query}?"
]
}
except Exception as e:
return {'error': f"Search failed: {str(e)}"}
# Main search function
def search(query: str, max_results: int = 5) -> Dict:
"""Main search function"""
engine = WebSearchEngine()
return engine.search(query, max_results)
|