import numpy as np import os.path as osp import torch_fidelity from PIL import Image from tqdm import tqdm import pickle as pkl import os, hashlib, pdb from pathlib import Path from torch import Tensor import torch, torchvision from einops import rearrange from omegaconf import OmegaConf import torch.distributed as dist from typing import List, Optional from torchvision import transforms from io import BytesIO as Bytes2Data from smart_open import open from .misc import is_main_process, get_rank import importlib, datetime, requests, time, shutil from collections import defaultdict, deque, OrderedDict from dotwiz import DotWiz URL_MAP = { "vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1" } CKPT_MAP = { "vgg_lpips": "vgg.pth" } MD5_MAP = { "vgg_lpips": "d507d7349b931f0638a25a48a722f98a" } def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self def customized_collate_fn(batch): collate_fn = {} if len(batch) < 2: for key, value in batch[0].items(): collate_fn[key] = [value] else: for i, dd in enumerate(batch): if i < 1: for key, value in dd.items(): collate_fn[key] = [value] else: for key, value in dd.items(): collate_fn[key].append(value) return collate_fn def trivial_batch_collator(batch): """ A batch collator that does nothing. """ return batch class NestedTensor(object): def __init__(self, tensors, mask: Optional[Tensor]): self.tensors = tensors self.mask = mask def to(self, device): # type: (Device) -> NestedTensor # noqa cast_tensor = self.tensors.to(device) mask = self.mask if mask is not None: assert mask is not None cast_mask = mask.to(device) else: cast_mask = None return NestedTensor(cast_tensor, cast_mask) def decompose(self): return self.tensors, self.mask def __repr__(self): return str(self.tensors) def _max_by_axis(the_list): # type: (List[List[int]]) -> List[int] maxes = the_list[0] for sublist in the_list[1:]: for index, item in enumerate(sublist): maxes[index] = max(maxes[index], item) return maxes def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): # TODO make this more general if tensor_list[0].ndim == 3: if torchvision._is_tracing(): # nested_tensor_from_tensor_list() does not export well to ONNX # call _onnx_nested_tensor_from_tensor_list() instead return _onnx_nested_tensor_from_tensor_list(tensor_list) # TODO make it support different-sized images max_size = _max_by_axis([list(img.shape) for img in tensor_list]) # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list])) batch_shape = [len(tensor_list)] + max_size b, c, h, w = batch_shape dtype = tensor_list[0].dtype device = tensor_list[0].device tensor = torch.zeros(batch_shape, dtype=dtype, device=device) mask = torch.ones((b, h, w), dtype=torch.bool, device=device) for img, pad_img, m in zip(tensor_list, tensor, mask): pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) m[: img.shape[1], : img.shape[2]] = False else: raise ValueError("not supported") return NestedTensor(tensor, mask) # _onnx_nested_tensor_from_tensor_list() is an implementation of # nested_tensor_from_tensor_list() that is supported by ONNX tracing. @torch.jit.unused def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor: max_size = [] for i in range(tensor_list[0].dim()): max_size_i = torch.max( torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32) ).to(torch.int64) max_size.append(max_size_i) max_size = tuple(max_size) # work around for # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) # m[: img.shape[1], :img.shape[2]] = False # which is not yet supported in onnx padded_imgs = [] padded_masks = [] for img in tensor_list: padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))] padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0])) padded_imgs.append(padded_img) m = torch.zeros_like(img[0], dtype=torch.int, device=img.device) padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1) padded_masks.append(padded_mask.to(torch.bool)) tensor = torch.stack(padded_imgs) mask = torch.stack(padded_masks) return NestedTensor(tensor, mask=mask) def is_dist_avail_and_initialized(): if not dist.is_available(): return False if not dist.is_initialized(): return False return True class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.4f} ({global_avg:.4f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda') dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value) class MetricLogger(object): def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if v is None: continue if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError("'{}' object has no attribute '{}'".format( type(self).__name__, attr)) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append( "{}: {}".format(name, str(meter)) ) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = '' start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt='{avg:.4f}') data_time = SmoothedValue(fmt='{avg:.4f}') space_fmt = ':' + str(len(str(len(iterable)))) + 'd' log_msg = [ header, '[{0' + space_fmt + '}/{1}]', 'eta: {eta}', '{meters}', 'time: {time}', 'data: {data}' ] if torch.cuda.is_available(): log_msg.append('max mem: {memory:.0f}') log_msg = self.delimiter.join(log_msg) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB)) else: print(log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time))) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('{} Total time: {} ({:.4f} s / it)'.format( header, total_time_str, total_time / len(iterable))) def all_reduce_mean(x): world_size = dist.get_world_size() if world_size > 1: x_reduce = torch.tensor(x).cuda() dist.all_reduce(x_reduce) x_reduce /= world_size return x_reduce.item() else: return x class NativeScaler: state_dict_key = "amp_scaler" def __init__(self): self._scaler = torch.cuda.amp.GradScaler() def __call__(self, loss, optimizer, clip_grad=3., parameters=None, create_graph=False, update_grad=True): self._scaler.scale(loss).backward(create_graph=create_graph) if update_grad: if clip_grad is not None: assert parameters is not None self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad) else: self._scaler.unscale_(optimizer) norm = get_grad_norm_(parameters) self._scaler.step(optimizer) self._scaler.update() else: norm = None return norm def state_dict(self): return self._scaler.state_dict() def load_state_dict(self, state_dict): self._scaler.load_state_dict(state_dict) def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor: if isinstance(parameters, torch.Tensor): parameters = [parameters] parameters = [p for p in parameters if p.grad is not None and p.requires_grad] norm_type = float(norm_type) if len(parameters) == 0: return torch.tensor(0.) device = parameters[0].grad.device total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type) return total_norm def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls) def instantiate_from_config(config): if not "target" in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def save_on_master(*args, **kwargs): if dist.get_rank() == 0: torch.save(*args, **kwargs) def save_model(args, epoch, model, model_without_ddp, optimizer_g, optimizer_d, loss_scaler): output_dir = Path(args.output_dir) epoch_name = str(epoch) if loss_scaler is not None: checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)] for checkpoint_path in checkpoint_paths: to_save = { 'model': model_without_ddp.state_dict(), 'optimizer_g': optimizer_g.state_dict(), 'optimizer_d': optimizer_d.state_dict(), 'epoch': epoch, 'scaler': loss_scaler.state_dict(), 'args': args, } save_on_master(to_save, checkpoint_path) else: client_state = {'epoch': epoch} model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state) def load_model(args, model_without_ddp, optimizer_g, optimizer_d, loss_scaler): if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) print("Resume checkpoint %s" % args.resume) if 'optimizer_g' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'eval') and args.eval): optimizer_g.load_state_dict(checkpoint['optimizer_g']) optimizer_d.load_state_dict(checkpoint['optimizer_d']) args.start_epoch = checkpoint['epoch'] + 1 if 'scaler' in checkpoint: loss_scaler.load_state_dict(checkpoint['scaler']) print("With optim & sched!") def download(url, local_path, chunk_size=1024): os.makedirs(os.path.split(local_path)[0], exist_ok=True) with requests.get(url, stream=True) as r: total_size = int(r.headers.get("content-length", 0)) with tqdm(total=total_size, unit="B", unit_scale=True) as pbar: with open(local_path, "wb") as f: for data in r.iter_content(chunk_size=chunk_size): if data: f.write(data) pbar.update(chunk_size) def md5_hash(path): with open(path, "rb") as f: content = f.read() return hashlib.md5(content).hexdigest() def get_ckpt_path(name, root, check=False): assert name in URL_MAP path = os.path.join(root, CKPT_MAP[name]) if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]): print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path)) download(URL_MAP[name], path) md5 = md5_hash(path) assert md5 == MD5_MAP[name], md5 return path class KeyNotFoundError(Exception): def __init__(self, cause, keys=None, visited=None): self.cause = cause self.keys = keys self.visited = visited messages = list() if keys is not None: messages.append("Key not found: {}".format(keys)) if visited is not None: messages.append("Visited: {}".format(visited)) messages.append("Cause:\n{}".format(cause)) message = "\n".join(messages) super().__init__(message) def retrieve( list_or_dict, key, splitval="/", default=None, expand=True, pass_success=False ): """Given a nested list or dict return the desired value at key expanding callable nodes if necessary and :attr:`expand` is ``True``. The expansion is done in-place. Parameters ---------- list_or_dict : list or dict Possibly nested list or dictionary. key : str key/to/value, path like string describing all keys necessary to consider to get to the desired value. List indices can also be passed here. splitval : str String that defines the delimiter between keys of the different depth levels in `key`. default : obj Value returned if :attr:`key` is not found. expand : bool Whether to expand callable nodes on the path or not. Returns ------- The desired value or if :attr:`default` is not ``None`` and the :attr:`key` is not found returns ``default``. Raises ------ Exception if ``key`` not in ``list_or_dict`` and :attr:`default` is ``None``. """ keys = key.split(splitval) success = True try: visited = [] parent = None last_key = None for key in keys: if callable(list_or_dict): if not expand: raise KeyNotFoundError( ValueError( "Trying to get past callable node with expand=False." ), keys=keys, visited=visited, ) list_or_dict = list_or_dict() parent[last_key] = list_or_dict last_key = key parent = list_or_dict try: if isinstance(list_or_dict, dict): list_or_dict = list_or_dict[key] else: list_or_dict = list_or_dict[int(key)] except (KeyError, IndexError, ValueError) as e: raise KeyNotFoundError(e, keys=keys, visited=visited) visited += [key] # final expansion of retrieved value if expand and callable(list_or_dict): list_or_dict = list_or_dict() parent[last_key] = list_or_dict except KeyNotFoundError as e: if default is None: raise e else: list_or_dict = default success = False if not pass_success: return list_or_dict else: return list_or_dict, success if __name__ == "__main__": config = {"keya": "a", "keyb": "b", "keyc": {"cc1": 1, "cc2": 2, } } from omegaconf import OmegaConf config = OmegaConf.create(config) print(config) retrieve(config, "keya") def instantiate_from_config(config): if not "target" in config: raise KeyError("Expected key `target` to instantiate.") return get_obj_from_str(config["target"])(**config.get("params", dict())) def get_obj_from_str(string, reload=False): module, cls = string.rsplit(".", 1) if reload: module_imp = importlib.import_module(module) importlib.reload(module_imp) return getattr(importlib.import_module(module, package=None), cls)