File size: 30,260 Bytes
af7c0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
import os, torch
import os.path as osp
import cv2
import shutil
import numpy as np
import copy
import torch_fidelity
import torch.nn as nn
from tqdm.auto import tqdm
from collections import OrderedDict
from einops import rearrange
from accelerate import Accelerator
from .util import instantiate_from_config
from torchvision.utils import make_grid, save_image
from torch.utils.data import DataLoader, random_split, DistributedSampler
from paintmind.utils.lr_scheduler import build_scheduler
from paintmind.utils.logger import SmoothedValue, MetricLogger, synchronize_processes, empty_cache
from paintmind.engine.misc import is_main_process, all_reduce_mean, concat_all_gather
from accelerate.utils import DistributedDataParallelKwargs, AutocastKwargs
from torch.optim import AdamW
from concurrent.futures import ThreadPoolExecutor
from torchmetrics.functional.image import (
    peak_signal_noise_ratio as psnr,
    structural_similarity_index_measure as ssim
)

def requires_grad(model, flag=True):
    for p in model.parameters():
        p.requires_grad = flag


def save_img(img, save_path):
    img = np.clip(img.numpy().transpose([1, 2, 0]) * 255, 0, 255)
    img = img.astype(np.uint8)[:, :, ::-1]
    cv2.imwrite(save_path, img)

def save_img_batch(imgs, save_paths):
    """Process and save multiple images at once using a thread pool."""
    # Convert to numpy and prepare all images in one go
    imgs = np.clip(imgs.numpy().transpose(0, 2, 3, 1) * 255, 0, 255).astype(np.uint8)
    imgs = imgs[:, :, :, ::-1]  # RGB to BGR for all images at once
    
    # Use ProcessPoolExecutor which is generally better for CPU-bound tasks
    # ThreadPoolExecutor is better for I/O-bound tasks like file saving
    with ThreadPoolExecutor(max_workers=32) as pool:
        # Submit all tasks at once
        futures = [pool.submit(cv2.imwrite, path, img) 
                  for path, img in zip(save_paths, imgs)]
        # Wait for all tasks to complete
        for future in futures:
            future.result()  # This will raise any exceptions that occurred

def get_fid_stats(real_dir, rec_dir, fid_stats):
    stats = torch_fidelity.calculate_metrics(
        input1=rec_dir,
        input2=real_dir,
        fid_statistics_file=fid_stats,
        cuda=True,
        isc=True,
        fid=True,
        kid=False,
        prc=False,
        verbose=False,
    )
    return stats


class EMAModel:
    """Model Exponential Moving Average."""
    def __init__(self, model, device, decay=0.999):
        self.device = device
        self.decay = decay
        self.ema_params = OrderedDict(
            (name, param.clone().detach().to(device))
            for name, param in model.named_parameters()
            if param.requires_grad
        )

    @torch.no_grad()
    def update(self, model):
        for name, param in model.named_parameters():
            if param.requires_grad:
                if name in self.ema_params:
                    self.ema_params[name].lerp_(param.data, 1 - self.decay)
                else:
                    self.ema_params[name] = param.data.clone().detach()

    def state_dict(self):
        return self.ema_params

    def load_state_dict(self, params):
        self.ema_params = OrderedDict(
            (name, param.clone().detach().to(self.device))
            for name, param in params.items()
        )

class DiffusionTrainer(nn.Module):
    def __init__(

        self,

        model,

        dataset,

        test_dataset=None,

        test_only=False,

        num_epoch=400,

        valid_size=32,

        lr=None,

        blr=1e-4,

        cosine_lr=True,

        lr_min=0,

        warmup_epochs=100,

        warmup_steps=None,

        warmup_lr_init=0,

        decay_steps=None,

        batch_size=32,

        eval_bs=32,

        test_bs=64,

        num_workers=0,

        pin_memory=False,

        max_grad_norm=None,

        grad_accum_steps=1,

        precision="bf16",

        save_every=10000,

        sample_every=1000,

        fid_every=50000,

        result_folder=None,

        log_dir="./log",

        steps=0,

        cfg=1.0,

        test_num_slots=None,

        eval_fid=False,

        fid_stats=None,

        enable_ema=False,

        use_multi_epochs_dataloader=False,

        compile=False,

        overfit=False,

        making_cache=False,

        cache_mode=False,

        latent_cache_file=None,

    ):
        super().__init__()
        kwargs = DistributedDataParallelKwargs(find_unused_parameters=False)
        self.accelerator = Accelerator(
            kwargs_handlers=[kwargs],
            mixed_precision="bf16",
            gradient_accumulation_steps=grad_accum_steps,
            log_with="tensorboard",
            project_dir=log_dir,
        )
        
        self.model = instantiate_from_config(model)
        self.num_slots = model.params.num_slots

        assert precision in ["bf16", "fp32"]
        precision = "fp32"
        if self.accelerator.is_main_process:
            print("Overlooking specified precision and using autocast bf16...")
        self.precision = precision

        if test_dataset is not None:
            test_dataset = instantiate_from_config(test_dataset)
            self.test_ds = test_dataset
            
            # Calculate padded dataset size to ensure even distribution
            total_size = len(test_dataset)
            world_size = self.accelerator.num_processes
            padding_size = world_size * test_bs - (total_size % (world_size * test_bs))
            self.test_dataset_size = total_size
            
            # Create a padded dataset wrapper
            class PaddedDataset(torch.utils.data.Dataset):
                def __init__(self, dataset, padding_size):
                    self.dataset = dataset
                    self.padding_size = padding_size
                    
                def __len__(self):
                    return len(self.dataset) + self.padding_size
                    
                def __getitem__(self, idx):
                    if idx < len(self.dataset):
                        return self.dataset[idx]
                    return self.dataset[0]
            
            self.test_ds = PaddedDataset(self.test_ds, padding_size)
            self.test_dl = DataLoader(
                self.test_ds,
                batch_size=test_bs,
                num_workers=num_workers,
                pin_memory=pin_memory,
                shuffle=False,
                drop_last=True,
            )
            if self.accelerator.is_main_process:
                print(f"test dataset size: {len(test_dataset)}, test batch size: {test_bs}")
        else:
            self.test_dl = None
        self.test_only = test_only

        if not test_only:
            dataset = instantiate_from_config(dataset)
            train_size = len(dataset) - valid_size
            self.train_ds, self.valid_ds = random_split(
                dataset,
                [train_size, valid_size],
                generator=torch.Generator().manual_seed(42),
            )
            if self.accelerator.is_main_process:
                print(f"train dataset size: {train_size}, valid dataset size: {valid_size}")

            sampler = DistributedSampler(
                self.train_ds,
                num_replicas=self.accelerator.num_processes,
                rank=self.accelerator.process_index,
                shuffle=True,
            )
            self.train_dl = DataLoader(
                self.train_ds,
                batch_size=batch_size,
                sampler=sampler,
                num_workers=num_workers,
                pin_memory=pin_memory,
                drop_last=True,
            )
            self.valid_dl = DataLoader(
                self.valid_ds,
                batch_size=eval_bs,
                shuffle=False,
                num_workers=num_workers,
                pin_memory=pin_memory,
            )

            effective_bs = batch_size * grad_accum_steps * self.accelerator.num_processes
            if lr is None:
                lr = blr * effective_bs / 256
            if self.accelerator.is_main_process:
                print(f"Effective batch size is {effective_bs}")

            params = filter(lambda p: p.requires_grad, self.model.parameters())
            self.g_optim = AdamW(params, lr=lr, betas=(0.9, 0.95), weight_decay=0)
            self.g_sched = self._create_scheduler(
                cosine_lr, warmup_epochs, warmup_steps, num_epoch, 
                lr_min, warmup_lr_init, decay_steps
            )
            if self.g_sched is not None:
                self.accelerator.register_for_checkpointing(self.g_sched)

        self.steps = steps
        self.loaded_steps = -1

        # Prepare everything together
        if not test_only:
            self.model, self.g_optim, self.g_sched = self.accelerator.prepare(
                self.model, self.g_optim, self.g_sched
            )
        else:
            self.model, self.test_dl = self.accelerator.prepare(self.model, self.test_dl)

        if compile:
            _model = self.accelerator.unwrap_model(self.model)
            _model.vae = torch.compile(_model.vae, mode="reduce-overhead")
            _model.dit = torch.compile(_model.dit, mode="reduce-overhead")
            # _model.encoder = torch.compile(_model.encoder, mode="reduce-overhead") # nan loss when compiled together with dit, no idea why
            _model.encoder2slot = torch.compile(_model.encoder2slot, mode="reduce-overhead")

        self.enable_ema = enable_ema
        if self.enable_ema and not self.test_only: # when testing, we directly load the ema dict and skip here
            self.ema_model = EMAModel(self.accelerator.unwrap_model(self.model), self.device)
            self.accelerator.register_for_checkpointing(self.ema_model)

        self._load_checkpoint(model.params.ckpt_path)
        if self.test_only:
            self.steps = self.loaded_steps

        self.num_epoch = num_epoch
        self.save_every = save_every
        self.samp_every = sample_every
        self.fid_every = fid_every
        self.max_grad_norm = max_grad_norm

        self.cache_mode = cache_mode

        self.cfg = cfg
        self.test_num_slots = test_num_slots
        if self.test_num_slots is not None:
            self.test_num_slots = min(self.test_num_slots, self.num_slots)
        else:
            self.test_num_slots = self.num_slots
        eval_fid = eval_fid or model.params.eval_fid # legacy
        self.eval_fid = eval_fid
        if eval_fid:
            if fid_stats is None:
                fid_stats = model.params.fid_stats # legacy
            assert fid_stats is not None
            assert test_dataset is not None
        self.fid_stats = fid_stats

        self.use_vq = model.params.use_vq if hasattr(model.params, "use_vq") else False
        self.vq_beta = model.params.code_beta if hasattr(model.params, "code_beta") else 0.25

        self.result_folder = result_folder
        self.model_saved_dir = os.path.join(result_folder, "models")
        os.makedirs(self.model_saved_dir, exist_ok=True)

        self.image_saved_dir = os.path.join(result_folder, "images")
        os.makedirs(self.image_saved_dir, exist_ok=True)

    @property
    def device(self):
        return self.accelerator.device

    def _create_scheduler(self, cosine_lr, warmup_epochs, warmup_steps, num_epoch, lr_min, warmup_lr_init, decay_steps):
        if warmup_epochs is not None:
            warmup_steps = warmup_epochs * len(self.train_dl)
        else:
            assert warmup_steps is not None

        scheduler = build_scheduler(
            self.g_optim,
            num_epoch,
            len(self.train_dl),
            lr_min,
            warmup_steps,
            warmup_lr_init,
            decay_steps,
            cosine_lr, # if not cosine_lr, then use step_lr (warmup, then fix)
        )
        return scheduler

    def _load_state_dict(self, state_dict):
        """Helper to load a state dict with proper prefix handling."""
        if 'state_dict' in state_dict:
            state_dict = state_dict['state_dict']
        # Remove '_orig_mod' prefix if present
        state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
        missing, unexpected = self.accelerator.unwrap_model(self.model).load_state_dict(
            state_dict, strict=False
        )
        if self.accelerator.is_main_process:
            print(f"Loaded model. Missing: {missing}, Unexpected: {unexpected}")

    def _load_safetensors(self, path):
        """Helper to load a safetensors checkpoint."""
        from safetensors.torch import safe_open
        with safe_open(path, framework="pt", device="cpu") as f:
            state_dict = {k: f.get_tensor(k) for k in f.keys()}
        self._load_state_dict(state_dict)

    def _load_checkpoint(self, ckpt_path=None):
        if ckpt_path is None or not osp.exists(ckpt_path):
            return

        if osp.isdir(ckpt_path):
            # ckpt_path is something like 'path/to/models/step10/'
            self.loaded_steps = int(
                ckpt_path.split("step")[-1].split("/")[0]
            )
            if not self.test_only:
                self.accelerator.load_state(ckpt_path)
            else:
                if self.enable_ema:
                    model_path = osp.join(ckpt_path, "custom_checkpoint_1.pkl")
                    if osp.exists(model_path):
                        state_dict = torch.load(model_path, map_location="cpu")
                        self._load_state_dict(state_dict)
                        if self.accelerator.is_main_process:
                            print(f"Loaded ema model from {model_path}")
                else:
                    model_path = osp.join(ckpt_path, "model.safetensors")
                    if osp.exists(model_path):
                        self._load_safetensors(model_path)
        else:
            # ckpt_path is something like 'path/to/models/step10.pt'
            if ckpt_path.endswith(".safetensors"):
                self._load_safetensors(ckpt_path)
            else:
                state_dict = torch.load(ckpt_path)
                self._load_state_dict(state_dict)
        if self.accelerator.is_main_process:
            print(f"Loaded checkpoint from {ckpt_path}")

    def train(self, config=None):
        n_parameters = sum(p.numel() for p in self.parameters() if p.requires_grad)
        if self.accelerator.is_main_process:
            print(f"number of learnable parameters: {n_parameters//1e6}M")
        if config is not None:
            # save the config
            import shutil
            from omegaconf import OmegaConf

            if isinstance(config, str) and osp.exists(config):
                # If it's a path, copy the file to config.yaml
                shutil.copy(config, osp.join(self.result_folder, "config.yaml"))
            else:
                # If it's an OmegaConf object, dump it
                config_save_path = osp.join(self.result_folder, "config.yaml")
                OmegaConf.save(config, config_save_path)

        self.accelerator.init_trackers("vqgan")

        if self.test_only:
            empty_cache()
            self.evaluate()
            self.accelerator.wait_for_everyone()
            empty_cache()
            return

        for epoch in range(self.num_epoch):
            if ((epoch + 1) * len(self.train_dl)) <= self.loaded_steps:
                if self.accelerator.is_main_process:
                    print(f"Epoch {epoch} is skipped because it is loaded from ckpt")
                self.steps += len(self.train_dl)
                continue

            if self.steps < self.loaded_steps:
                for _ in self.train_dl:
                    self.steps += 1
                    if self.steps >= self.loaded_steps:
                        break
            
            
            self.accelerator.unwrap_model(self.model).current_epoch = epoch
            self.model.train()  # Set model to training mode

            logger = MetricLogger(delimiter="  ")
            logger.add_meter('lr', SmoothedValue(window_size=1, fmt='{value:.6f}'))
            header = 'Epoch: [{}/{}]'.format(epoch, self.num_epoch)
            print_freq = 20
            for data_iter_step, batch in enumerate(logger.log_every(self.train_dl, print_freq, header)):
                # Move batch to device once
                if isinstance(batch, tuple) or isinstance(batch, list):
                    batch = tuple(b.to(self.device, non_blocking=True) for b in batch)
                    if self.cache_mode:
                        img, latent, targets = batch[0], batch[1], batch[2]
                        img = img.to(self.device, non_blocking=True)
                        latent = latent.to(self.device, non_blocking=True)
                        targets = targets.to(self.device, non_blocking=True)
                    else:
                        latent = None
                        img, targets = batch[0], batch[1]
                        img = img.to(self.device, non_blocking=True)
                        targets = targets.to(self.device, non_blocking=True)
                else:
                    img = batch
                    latent = None

                self.steps += 1

                with self.accelerator.accumulate(self.model):
                    with self.accelerator.autocast():
                        if self.steps == 1:
                            print(f"Training batch size: {img.size(0)}")
                            print(f"Hello from index {self.accelerator.local_process_index}")
                        losses = self.model(img, targets, latents=latent, epoch=epoch)
                        # combine
                        loss = sum([v for _, v in losses.items()])
                        diff_loss = losses["diff_loss"]
                        if self.use_vq:
                            vq_loss = losses["vq_loss"]

                    self.accelerator.backward(loss)
                    if self.accelerator.sync_gradients and self.max_grad_norm is not None:
                        self.accelerator.clip_grad_norm_(self.model.parameters(), self.max_grad_norm)
                    self.accelerator.unwrap_model(self.model).cancel_gradients_encoder(epoch)
                    self.g_optim.step()
                    if self.g_sched is not None:
                        self.g_sched.step_update(self.steps)
                    self.g_optim.zero_grad()

                # synchronize_processes()

                # update ema with state dict
                if self.enable_ema:
                    self.ema_model.update(self.accelerator.unwrap_model(self.model))

                logger.update(diff_loss=diff_loss.item())
                if self.use_vq:
                    logger.update(vq_loss=vq_loss.item() / self.vq_beta)
                if 'kl_loss' in losses:
                    logger.update(kl_loss=losses["kl_loss"].item())
                if 'repa_loss' in losses:
                    logger.update(repa_loss=losses["repa_loss"].item())
                logger.update(lr=self.g_optim.param_groups[0]["lr"])

                if self.steps % self.save_every == 0:
                    self.save()

                if (self.steps % self.samp_every == 0) or (self.steps % self.fid_every == 0):
                    empty_cache()
                    self.evaluate()
                    self.accelerator.wait_for_everyone()
                    empty_cache()

                # omitted all_gather here
                # write_dict = dict(epoch=epoch)
                # write_dict.update(diff_loss=diff_loss.item())
                # if "kl_loss" in losses:
                #     write_dict.update(kl_loss=losses["kl_loss"].item())
                # if self.use_vq:
                #     write_dict.update(vq_loss=vq_loss.item() / self.vq_beta)
                # write_dict.update(lr=self.g_optim.param_groups[0]["lr"])
                # self.accelerator.log(write_dict, step=self.steps)

            logger.synchronize_between_processes()
            if self.accelerator.is_main_process:
                print("Averaged stats:", logger)

        self.accelerator.end_training()
        self.save()
        if self.accelerator.is_main_process:
            print("Train finished!")

    def save(self):
        self.accelerator.wait_for_everyone()
        self.accelerator.save_state(
            os.path.join(self.model_saved_dir, f"step{self.steps}")
        )

    @torch.no_grad()
    def evaluate(self, use_ema=True):
        self.model.eval()
        # switch to ema params, only when eval_fid is True
        use_ema = use_ema and self.enable_ema and self.eval_fid and not self.test_only
        # use_ema = False
        if use_ema:
            if hasattr(self, "ema_model"):
                model_without_ddp = self.accelerator.unwrap_model(self.model)
                model_state_dict = copy.deepcopy(model_without_ddp.state_dict())
                ema_state_dict = copy.deepcopy(model_without_ddp.state_dict())
                for i, (name, _value) in enumerate(model_without_ddp.named_parameters()):
                    if "nested_sampler" in name:
                        continue
                    if name in self.ema_model.state_dict():
                        ema_state_dict[name] = self.ema_model.state_dict()[name]
                if self.accelerator.is_main_process:
                    print("Switch to ema")
                msg = model_without_ddp.load_state_dict(ema_state_dict)
                if self.accelerator.is_main_process:
                    print(msg)
            else:
                print("EMA model not found, using original model")
                use_ema = False

        if not self.test_only:
            with tqdm(
                self.valid_dl,
                dynamic_ncols=True,
                disable=not self.accelerator.is_main_process,
            ) as valid_dl:
                for batch_i, batch in enumerate(valid_dl):
                    if isinstance(batch, tuple) or isinstance(batch, list):
                        img, targets = batch[0], batch[1]
                    else:
                        img = batch

                    with self.accelerator.autocast():
                        rec = self.model(img, targets, sample=True, inference_with_n_slots=self.test_num_slots, cfg=1.0)
                    imgs_and_recs = torch.stack((img.to(rec.device), rec), dim=0)
                    imgs_and_recs = rearrange(imgs_and_recs, "r b ... -> (b r) ...")
                    imgs_and_recs = imgs_and_recs.detach().cpu().float()

                    grid = make_grid(
                        imgs_and_recs, nrow=6, normalize=True, value_range=(0, 1)
                    )
                    if self.accelerator.is_main_process:
                        save_image(
                            grid,
                            os.path.join(
                                self.image_saved_dir, f"step_{self.steps}_slots{self.test_num_slots}_{batch_i}.jpg"
                            ),
                        )

                    if self.cfg != 1.0:
                        with self.accelerator.autocast():
                            rec = self.model(img, targets, sample=True, inference_with_n_slots=self.test_num_slots, cfg=self.cfg)

                        imgs_and_recs = torch.stack((img.to(rec.device), rec), dim=0)
                        imgs_and_recs = rearrange(imgs_and_recs, "r b ... -> (b r) ...")
                        imgs_and_recs = imgs_and_recs.detach().cpu().float()

                        grid = make_grid(
                            imgs_and_recs, nrow=6, normalize=True, value_range=(0, 1)
                        )
                        if self.accelerator.is_main_process:
                            save_image(
                                grid,
                                os.path.join(
                                    self.image_saved_dir, f"step_{self.steps}_cfg_{self.cfg}_slots{self.test_num_slots}_{batch_i}.jpg"
                                ),
                            )
        if (self.eval_fid and self.test_dl is not None) and (self.test_only or (self.steps % self.fid_every == 0)):
            # Create output directories
            if self.test_dataset_size > 10000:
                real_dir = "./dataset/imagenet/val256"
            else:
                real_dir = "./dataset/coco/val2017_256"
            rec_dir = os.path.join(self.image_saved_dir, f"rec_step{self.steps}_slots{self.test_num_slots}")
            os.makedirs(rec_dir, exist_ok=True)
            
            if self.cfg != 1.0:
                rec_cfg_dir = os.path.join(self.image_saved_dir, f"rec_step{self.steps}_cfg_{self.cfg}_slots{self.test_num_slots}")
                os.makedirs(rec_cfg_dir, exist_ok=True)

            def process_batch(cfg_value, save_dir, header):
                logger = MetricLogger(delimiter="  ")
                print_freq = 5
                psnr_values = []
                ssim_values = []
                total_processed = 0
                
                for batch_i, batch in enumerate(logger.log_every(self.test_dl, print_freq, header)):
                    imgs, targets = (batch[0], batch[1]) if isinstance(batch, (tuple, list)) else (batch, None)
                    
                    # Skip processing if we've already processed all real samples
                    if total_processed >= self.test_dataset_size:
                        break
                        
                    imgs = imgs.to(self.device, non_blocking=True)
                    if targets is not None:
                        targets = targets.to(self.device, non_blocking=True)

                    with self.accelerator.autocast():
                        recs = self.model(imgs, targets, sample=True, inference_with_n_slots=self.test_num_slots, cfg=cfg_value)

                    psnr_val = psnr(recs, imgs, data_range=1.0)
                    ssim_val = ssim(recs, imgs, data_range=1.0)
                    
                    recs = concat_all_gather(recs).detach()
                    psnr_val = concat_all_gather(psnr_val.view(1))
                    ssim_val = concat_all_gather(ssim_val.view(1))

                    # Remove padding after gathering from all GPUs
                    samples_in_batch = min(
                        recs.size(0),  # Always use the gathered size
                        self.test_dataset_size - total_processed
                    )
                    recs = recs[:samples_in_batch]
                    psnr_val = psnr_val[:samples_in_batch]
                    ssim_val = ssim_val[:samples_in_batch]
                    psnr_values.append(psnr_val)
                    ssim_values.append(ssim_val)

                    if self.accelerator.is_main_process:
                        rec_paths = [os.path.join(save_dir, f"step_{self.steps}_slots{self.test_num_slots}_{batch_i}_{j}_rec_cfg_{cfg_value}_slots{self.test_num_slots}.png") 
                                   for j in range(recs.size(0))]
                        save_img_batch(recs.cpu(), rec_paths)
                    
                    total_processed += samples_in_batch

                    self.accelerator.wait_for_everyone()
                    
                return torch.cat(psnr_values).mean(), torch.cat(ssim_values).mean()

            # Helper function to calculate and log metrics
            def calculate_and_log_metrics(real_dir, rec_dir, cfg_value, psnr_val, ssim_val):
                if self.accelerator.is_main_process:
                    metrics_dict = get_fid_stats(real_dir, rec_dir, self.fid_stats)
                    fid = metrics_dict["frechet_inception_distance"]
                    inception_score = metrics_dict["inception_score_mean"]
                    
                    metric_prefix = "fid_ema" if use_ema else "fid"
                    isc_prefix = "isc_ema" if use_ema else "isc"
                    self.accelerator.log({
                        metric_prefix: fid,
                        isc_prefix: inception_score,
                        f"psnr_{'ema' if use_ema else 'test'}": psnr_val,
                        f"ssim_{'ema' if use_ema else 'test'}": ssim_val,
                        "cfg": cfg_value
                    }, step=self.steps)
                    
                    print(f"{'EMA ' if use_ema else ''}{f'CFG: {cfg_value}'} "
                          f"FID: {fid:.2f}, ISC: {inception_score:.2f}, "
                          f"PSNR: {psnr_val:.2f}, SSIM: {ssim_val:.4f}")

            # Process without CFG
            if self.cfg == 1.0 or not self.test_only:
                psnr_val, ssim_val = process_batch(1.0, rec_dir, 'Testing: w/o CFG')
                calculate_and_log_metrics(real_dir, rec_dir, 1.0, psnr_val, ssim_val)

            # Process with CFG if needed
            if self.cfg != 1.0:
                psnr_val, ssim_val = process_batch(self.cfg, rec_cfg_dir, 'Testing: w/ CFG')
                calculate_and_log_metrics(real_dir, rec_cfg_dir, self.cfg, psnr_val, ssim_val)

            # Cleanup
            if self.accelerator.is_main_process:
                shutil.rmtree(rec_dir)
                if self.cfg != 1.0:
                    shutil.rmtree(rec_cfg_dir)

        # back to no ema
        if use_ema:
            if self.accelerator.is_main_process:
                print("Switch back from ema")
            model_without_ddp.load_state_dict(model_state_dict)

        self.model.train()