File size: 9,075 Bytes
af7c0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import socket
import os, sys, pdb
from torch import inf
import os.path as osp
from pathlib import Path
import builtins, datetime
import torch.distributed as dist
import os, sys, time, torch, copy, pdb
from collections import defaultdict, deque

def print_available_port():

    return _find_free_port()

def _find_free_port():
    
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    # Binding to port 0 will cause the OS to find an available port for us
    sock.bind(("", 0))
    port = sock.getsockname()[1]
    sock.close()
    # NOTE: there is still a chance the port could be taken by other processes.
    return port

def ensure_dir(dirpath):
    
    if not osp.exists(dirpath):
        os.makedirs(dirpath, exist_ok=True)
 
def setup_for_distributed(is_master):
    """
    This function disables printing when not in master process
    """
    builtin_print = builtins.print

    def print(*args, **kwargs):
        force = kwargs.pop('force', False)
        force = force or (get_world_size() > 8)
        if is_master or force:
            now = datetime.datetime.now().time()
            builtin_print('[{}] '.format(now), end='')  # print with time stamp
            builtin_print(*args, **kwargs)

    builtins.print = print


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def concat_all_gather(tensor):
    """
    Performs all_gather operation on the provided tensors.
    *** Warning ***: torch.distributed.all_gather has no gradient.
    """
    tensors_gather = [torch.ones_like(tensor)
        for _ in range(torch.distributed.get_world_size())]
    torch.distributed.all_gather(tensors_gather, tensor, async_op=False)

    output = torch.cat(tensors_gather, dim=0)
    return output


def is_main_process():
    return get_rank() == 0


def save_on_master(*args, **kwargs):
    if is_main_process():
        torch.save(*args, **kwargs)


def init_distributed_mode(args):

    if args.dist_on_itp:
        args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
        args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
        args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
        assert isinstance(args.port, int) & (args.port > 0) & (args.port < 1<<30)
        port = _find_free_port()
        # args.dist_url = "tcp://%s:%s" % (port, os.environ['MASTER_PORT'])
        args.dist_url = f'tcp://127.0.0.1:{port}'
        os.environ['LOCAL_RANK'] = str(args.gpu)
        os.environ['RANK'] = str(args.rank)
        os.environ['WORLD_SIZE'] = str(args.world_size)
        # ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
    elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
        args.rank = int(os.environ["RANK"])
        args.world_size = int(os.environ['WORLD_SIZE'])
        args.gpu = int(os.environ['LOCAL_RANK'])
    elif 'SLURM_PROCID' in os.environ:
        args.rank = int(os.environ['SLURM_PROCID'])
        args.gpu = args.rank % torch.cuda.device_count()
    else:
        print('Not using distributed mode')
        setup_for_distributed(is_master=True)  # hack
        args.distributed = False
        return

    args.distributed = True

    torch.cuda.set_device(args.gpu)
    args.dist_backend = 'nccl'
    print('| distributed init (rank {}): {}, gpu {}'.format(
        args.rank, args.dist_url, args.gpu), flush=True)
    torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                         world_size=args.world_size, rank=args.rank)
    torch.distributed.barrier()
    setup_for_distributed(args.rank == 0)

class NativeScalerWithGradNormCount:
    state_dict_key = "amp_scaler"

    def __init__(self):
        self._scaler = torch.cuda.amp.GradScaler()

    def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
        self._scaler.scale(loss).backward(create_graph=create_graph)
        if update_grad:
            if clip_grad is not None:
                assert parameters is not None
                self._scaler.unscale_(optimizer)  # unscale the gradients of optimizer's assigned params in-place
                norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
            else:
                self._scaler.unscale_(optimizer)
                norm = get_grad_norm_(parameters)
            self._scaler.step(optimizer)
            self._scaler.update()
        else:
            norm = None
        return norm

    def state_dict(self):
        return self._scaler.state_dict()

    def load_state_dict(self, state_dict):
        self._scaler.load_state_dict(state_dict)


def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
    if isinstance(parameters, torch.Tensor):
        parameters = [parameters]
    parameters = [p for p in parameters if p.grad is not None]
    norm_type = float(norm_type)
    if len(parameters) == 0:
        return torch.tensor(0.)
    device = parameters[0].grad.device
    if norm_type == inf:
        total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
    else:
        total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
    return total_norm


def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, ema_params=None):
    output_dir = Path(args.output_dir)
    epoch_name = str(epoch)
    if loss_scaler is not None:
        checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)]

        # ema
        if ema_params is not None:
            ema_state_dict = copy.deepcopy(model_without_ddp.state_dict())
            for i, (name, _value) in enumerate(model_without_ddp.named_parameters()):
                assert name in ema_state_dict
                ema_state_dict[name] = ema_params[i]
        else:
            ema_state_dict = None

        for checkpoint_path in checkpoint_paths:
            to_save = {
                'model': model_without_ddp.state_dict(),
                'model_ema': ema_state_dict,
                'optimizer': optimizer.state_dict(),
                'epoch': epoch,
                'scaler': loss_scaler.state_dict(),
                'args': args,
            }

            save_on_master(to_save, checkpoint_path)
    else:
        client_state = {'epoch': epoch}
        model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state)


def save_model_last(args, epoch, model, model_without_ddp, optimizer, loss_scaler, ema_params=None):

    output_dir = Path(args.output_dir)
    epoch_name = 'last'
    if loss_scaler is not None:
        checkpoint_paths = [output_dir / ('checkpoint-%s.pth' % epoch_name)]

        # ema
        if ema_params is not None:
            ema_state_dict = copy.deepcopy(model_without_ddp.state_dict())
            for i, (name, _value) in enumerate(model_without_ddp.named_parameters()):
                assert name in ema_state_dict
                ema_state_dict[name] = ema_params[i]
        else:
            ema_state_dict = None

        for checkpoint_path in checkpoint_paths:
            to_save = {
                'model': model_without_ddp.state_dict(),
                'model_ema': ema_state_dict,
                'optimizer': optimizer.state_dict(),
                'epoch': epoch,
                'scaler': loss_scaler.state_dict(),
                'args': args,
            }

            save_on_master(to_save, checkpoint_path)
    else:
        client_state = {'epoch': epoch}
        model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint-%s" % epoch_name, client_state=client_state)


def load_model(args, model_without_ddp, optimizer, loss_scaler):
    
    if osp.exists(osp.join(args.resume, "checkpoint-last.pth")):
        resume_path = osp.join(args.resume, "checkpoint-last.pth")
    else:
        resume_path = args.resume
    if args.resume:
        checkpoint = torch.load(resume_path, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        print("Resume checkpoint %s" % resume_path)
        if 'optimizer' in checkpoint and 'epoch' in checkpoint and not (hasattr(args, 'evaluate') and args.evaluate):
            optimizer.load_state_dict(checkpoint['optimizer'])
            args.start_epoch = checkpoint['epoch'] + 1
            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])
            print("With optim & sched!")

def all_reduce_mean(x):

    world_size = get_world_size()
    if world_size > 1:
        x_reduce = torch.tensor(x).cuda()
        dist.all_reduce(x_reduce)
        x_reduce /= world_size
        return x_reduce.item()
    else:
        return x