|
from diffusers import DiffusionPipeline, LCMScheduler |
|
import torch |
|
|
|
|
|
def get_lcm_lora_pipeline( |
|
base_model_id: str, |
|
lcm_lora_id: str, |
|
use_local_model: bool, |
|
torch_data_type: torch.dtype, |
|
): |
|
pipeline = DiffusionPipeline.from_pretrained( |
|
base_model_id, |
|
torch_dtype=torch_data_type, |
|
local_files_only=use_local_model, |
|
) |
|
pipeline.load_lora_weights( |
|
lcm_lora_id, |
|
local_files_only=use_local_model, |
|
) |
|
if "lcm" in lcm_lora_id.lower(): |
|
print("LCM LoRA model detected so using recommended LCMScheduler") |
|
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) |
|
pipeline.fuse_lora() |
|
pipeline.unet.to(memory_format=torch.channels_last) |
|
return pipeline |
|
|