import gradio as gr from diffusers import StableDiffusionPipeline import torch # Load the model model_id = "Intel/sd-1.5-square-quantized" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) # Optional: Try OpenVINO if available try: from optimum.intel import OVStableDiffusionPipeline pipe = OVStableDiffusionPipeline.from_pretrained(model_id, export=False, library_name="diffusers") except (ImportError, ModuleNotFoundError): print("Falling back to standard diffusers pipeline (no OpenVINO optimization).") # Define the inference function def generate_image(prompt): image = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] return image # Create the Gradio interface interface = gr.Interface( fn=generate_image, inputs=gr.Textbox(label="Enter your prompt"), outputs=gr.Image(label="Generated Image"), title="Stable Diffusion 1.5 Square Quantized Demo", description="Generate square images using Intel's quantized SD 1.5 model." ) # Launch the interface interface.launch()