from fastapi import FastAPI, HTTPException from fastapi.responses import JSONResponse import cv2 import numpy as np from PIL import Image import noise import io import base64 from pydantic import BaseModel app = FastAPI(title="Advanced Material Map Generator API") # Request model for input class MapRequest(BaseModel): image_base64: str normal_strength: float = 1.0 normal_blur: int = 5 normal_bilateral: bool = False normal_color: float = 0.3 disp_contrast: float = 1.0 disp_noise: bool = False disp_noise_scale: float = 0.1 disp_edge: float = 1.0 rough_invert: bool = True rough_sharpness: float = 1.0 rough_detail: float = 0.5 rough_freq: float = 0.5 def generate_normal_map(image: np.ndarray, strength: float, blur_size: int, use_bilateral: bool, color_influence: float) -> Image.Image: gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) if use_bilateral: gray = cv2.bilateralFilter(gray, 9, 75, 75) else: gray = cv2.GaussianBlur(gray, (blur_size, blur_size), 0) levels = 3 normal_map = np.zeros((gray.shape[0], gray.shape[1], 3), dtype=np.float32) for i in range(levels): scale = 1 / (2 ** i) resized = cv2.resize(gray, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA) sobel_x = cv2.Scharr(resized, cv2.CV_64F, 1, 0) sobel_y = cv2.Scharr(resized, cv2.CV_64F, 0, 1) sobel_x = cv2.resize(sobel_x, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_LINEAR) sobel_y = cv2.resize(sobel_y, (gray.shape[1], gray.shape[0]), interpolation=cv2.INTER_LINEAR) normal_map[..., 0] += sobel_x * (1.0 / levels) normal_map[..., 1] += sobel_y * (1.0 / levels) normal_map[..., 0] = cv2.normalize(normal_map[..., 0], None, -strength, strength, cv2.NORM_MINMAX) normal_map[..., 1] = cv2.normalize(normal_map[..., 1], None, -strength, strength, cv2.NORM_MINMAX) normal_map[..., 2] = 1.0 color_factor = color_influence * strength normal_map[..., 0] += (image[..., 0] / 255.0 - 0.5) * color_factor normal_map[..., 1] += (image[..., 1] / 255.0 - 0.5) * color_factor norm = np.linalg.norm(normal_map, axis=2, keepdims=True) normal_map = np.divide(normal_map, norm, out=np.zeros_like(normal_map), where=norm != 0) normal_map = (normal_map + 1) * 127.5 normal_map = np.clip(normal_map, 0, 255).astype(np.uint8) return Image.fromarray(normal_map) def generate_displacement_map(image: np.ndarray, contrast: float, add_noise: bool, noise_scale: float, edge_boost: float) -> Image.Image: img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) img = clahe.apply(img) img = cv2.convertScaleAbs(img, alpha=contrast, beta=0) laplacian = cv2.Laplacian(img, cv2.CV_64F) laplacian = cv2.convertScaleAbs(laplacian, alpha=edge_boost, beta=0) img = cv2.addWeighted(img, 1.0, laplacian, 0.5 * edge_boost, 0) if add_noise: height, width = img.shape noise_map = np.zeros((height, width), dtype=np.float32) for y in range(height): for x in range(width): noise_map[y, x] = noise.pnoise2(x / 50.0, y / 50.0, octaves=6) * noise_scale * 255 img = cv2.add(img, noise_map.astype(np.uint8)) return Image.fromarray(img) def generate_roughness_map(image: np.ndarray, invert: bool, sharpness: float, detail_boost: float, frequency_weight: float) -> Image.Image: img = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) low_freq = cv2.bilateralFilter(img, 9, 75, 75) high_freq = cv2.subtract(img, low_freq) img = cv2.addWeighted(low_freq, 1.0 - frequency_weight, high_freq, frequency_weight, 0) if invert: img = 255 - img blurred = cv2.GaussianBlur(img, (5, 5), 0) img = cv2.addWeighted(img, 1.0 + sharpness, blurred, -sharpness, 0) img = cv2.addWeighted(img, 1.0 + detail_boost, blurred, -detail_boost, 0) return Image.fromarray(img) def image_to_base64(img: Image.Image) -> str: buffered = io.BytesIO() img.save(buffered, format="PNG") return base64.b64encode(buffered.getvalue()).decode("utf-8") @app.post("/generate_maps/") async def generate_maps(request: MapRequest): try: # Decode base64 image image_bytes = base64.b64decode(request.image_base64) image = Image.open(io.BytesIO(image_bytes)).convert("RGB") img_array = np.array(image) # Generate maps normal_map = generate_normal_map( img_array, request.normal_strength, request.normal_blur, request.normal_bilateral, request.normal_color ) displacement_map = generate_displacement_map( img_array, request.disp_contrast, request.disp_noise, request.disp_noise_scale, request.disp_edge ) roughness_map = generate_roughness_map( img_array, request.rough_invert, request.rough_sharpness, request.rough_detail, request.rough_freq ) # Convert to base64 normal_base64 = image_to_base64(normal_map) displacement_base64 = image_to_base64(displacement_map) roughness_base64 = image_to_base64(roughness_map) return JSONResponse(content={ "status": "success", "normal_map": normal_base64, "displacement_map": displacement_base64, "roughness_map": roughness_base64 }) except Exception as e: raise HTTPException(status_code=500, detail=str(e))