Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
3 |
+
|
4 |
+
# Load the model and tokenizer from Hugging Face Hub
|
5 |
+
model_name = "teckmill/Jaleah-ai" # Replace with your model repo name if needed
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Initialize the pipeline
|
10 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
11 |
+
|
12 |
+
def generate_text(prompt):
|
13 |
+
# Generate text using the model
|
14 |
+
generated = generator(prompt, max_length=50)
|
15 |
+
return generated[0]['generated_text']
|
16 |
+
|
17 |
+
# Streamlit UI
|
18 |
+
st.title("Jaleah AI - Text Generation")
|
19 |
+
st.write("Enter a prompt to generate text:")
|
20 |
+
|
21 |
+
# Text input for the user to enter a prompt
|
22 |
+
prompt = st.text_area("Prompt", "Once upon a time...")
|
23 |
+
|
24 |
+
# Button to trigger the model inference
|
25 |
+
if st.button("Generate Text"):
|
26 |
+
if prompt:
|
27 |
+
generated_text = generate_text(prompt)
|
28 |
+
st.subheader("Generated Text")
|
29 |
+
st.write(generated_text)
|
30 |
+
else:
|
31 |
+
st.warning("Please enter a prompt to generate text.")
|