teckmill commited on
Commit
e8fe080
·
verified ·
1 Parent(s): 71e86c7

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
+
4
+ # Load the model and tokenizer from Hugging Face Hub
5
+ model_name = "teckmill/Jaleah-ai" # Replace with your model repo name if needed
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+
9
+ # Initialize the pipeline
10
+ generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
11
+
12
+ def generate_text(prompt):
13
+ # Generate text using the model
14
+ generated = generator(prompt, max_length=50)
15
+ return generated[0]['generated_text']
16
+
17
+ # Streamlit UI
18
+ st.title("Jaleah AI - Text Generation")
19
+ st.write("Enter a prompt to generate text:")
20
+
21
+ # Text input for the user to enter a prompt
22
+ prompt = st.text_area("Prompt", "Once upon a time...")
23
+
24
+ # Button to trigger the model inference
25
+ if st.button("Generate Text"):
26
+ if prompt:
27
+ generated_text = generate_text(prompt)
28
+ st.subheader("Generated Text")
29
+ st.write(generated_text)
30
+ else:
31
+ st.warning("Please enter a prompt to generate text.")