File size: 1,255 Bytes
44504f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from knw import knw


class pattern_mining(knw):
    def __init__(self):
        super().__init__()
        self.name = "pami"
        self.description = "The pami library is a Python library for pattern mining. User can choose many algorithms like FP-growth algorithm."
        self.core_function = "pami"
        self.mode = 'full'

    def pami(self):
        return """
        !pip install PAMI
        from PAMI.frequentPattern.basic import FPGrowth as alg
        fileURL = "https://u-aizu.ac.jp/~udayrage/datasets/transactionalDatabases/Transactional_T10I4D100K.csv"
        minSup = 300
        obj = alg.FPGrowth(iFile=fileURL, minSup=minSup, sep='\t') #here is sep='tab'
        # obj.startMine()  #deprecated
        obj.mine()
        obj.save('frequentPatternsAtMinSupCount300.txt')
        frequentPatternsDF = obj.getPatternsAsDataFrame()
        print('Total No of patterns: ' + str(len(frequentPatternsDF)))  # print the total number of patterns
        print('Runtime: ' + str(obj.getRuntime()))  # measure the runtime
        print('Memory (RSS): ' + str(obj.getMemoryRSS()))
        print('Memory (USS): ' + str(obj.getMemoryUSS()))
        """


# if __name__ == '__main__':
#     pami = pami()
#     print(pami.get_core_function())