import streamlit as st import json import os import uuid import re import requests from datetime import datetime from io import BytesIO from decimal import Decimal # Add this import for DynamoDB float handling # Third-party library imports import boto3 from PIL import Image import firebase_admin from firebase_admin import credentials, auth import pandas as pd import streamlit_tags as st_tags from dotenv import load_dotenv # Load environment variables from .env file if it exists load_dotenv() # Detect if running on mobile def is_mobile(): # Try to detect mobile browsers based on User-Agent try: user_agent = st.get_current_user().user_agent return any(device in user_agent.lower() for device in ["android", "iphone", "ipad", "mobile"]) except: # If we can't detect, assume it might be mobile for better experience return False # Auto-expand sidebar on mobile if is_mobile() and "sidebar_expanded" not in st.session_state: st.session_state["sidebar_expanded"] = True # Note: This doesn't directly control Streamlit's sidebar, but we'll use this flag # Custom CSS for better mobile experience st.markdown(""" """, unsafe_allow_html=True) # Load AWS credentials using correct HF Secrets AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY") AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY") AWS_REGION = os.getenv("AWS_REGION", "us-east-1") S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME", "food-image-crowdsourcing") DYNAMODB_TABLE = os.getenv("DYNAMODB_TABLE", "image_metadata") HF_API_TOKEN = os.getenv("HF_API_TOKEN", "") # For Hugging Face Inference API # Load Firebase credentials FIREBASE_CONFIG = json.loads(os.getenv("FIREBASE_CONFIG", "{}")) # Initialize Firebase Admin SDK (Prevent multiple initialization) if not firebase_admin._apps: try: cred = credentials.Certificate(FIREBASE_CONFIG) firebase_admin.initialize_app(cred) except Exception as e: st.error(f"Firebase initialization error: {e}") if st.button("Continue in Demo Mode"): st.session_state["demo_mode"] = True else: st.stop() # Initialize AWS Services (S3 & DynamoDB) try: s3 = boto3.client( "s3", aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_SECRET_KEY, region_name=AWS_REGION ) dynamodb = boto3.resource( "dynamodb", region_name=AWS_REGION, aws_access_key_id=AWS_ACCESS_KEY, aws_secret_access_key=AWS_SECRET_KEY, ) metadata_table = dynamodb.Table(DYNAMODB_TABLE) except Exception as e: st.error(f"AWS initialization error: {e}") if st.button("Continue in Demo Mode"): st.session_state["demo_mode"] = True else: st.stop() # Food Intellisense List FOOD_SUGGESTIONS = [ "Ajvar", "Angel Wings", "Apple", "Apple Pie", "Apfelstrudel", "Arancini", "Asparagus", "Babka", "Bagel","Baguette", "Baklava", "Banana", "Banana Bread", "Banh Mi", "Banitsa", "Barbecue Ribs", "BBQ Chicken", "BBQ Chicken Pizza", "BBQ Ribs", "Bean Buritto", "Bear Claw", "Beef Empanadas", "Beef Pho", "Beef Sirloin", "Beef Stroganoff", "Beer", "Beets", "Bell Pepper", "Biryani", "Bistecca alla Fiorentina", "Black Beans", "Black Forest Cake", "Black Olives", "Blini", "Borscht", "Bossam", "Brioche", "Broccoli", "Brown Rice", "Bruschetta", "Brussels Sprouts", "Buckwheat", "Buffalo Wings", "Burger", "Burrito", "Butter Chicken", "Cabbage", "Cabbage Rolls", "Calzone", "Cannoli", "Carrot", "Carrot Cake", "Cauliflower", "Cauliflower Soup", "Cevapi", "Ceviche", "Ceviche de Camaron", "Challah", "Char Siu", "Cheese Empanadas", "Cheesecake", "Chicken", "Chicken Broth", "Chicken Empanadas", "Chicken Wings", "Chickpeas", "Chiles en Nogada", "Chili Sauce", "Chimichirri Steak", "Chow Mein", "Clams", "Cold Beet Soup", "Corn", "Corn on the Cob", "Coxinha", "Crab Cakes", "Cream Cheese", "Creamy Mushroom Risotto", "Creme Brulee", "Creole Gumbo", "Croissant", "Croque Monsieur", "Cucumber", "Cucumber Soup", "Deep-fried", "Dim Sum", "Dolmades", "Doughnuts", "Duck", "Eggplant", "Eggplant Spread", "Eggs", "Enchiladas", "Encebollado", "Falafel", "Fanesca", "Fasolada", "Faworki", "Filet Mignon", "Fish", "Fish and Chips", "Fish Tacos", "Flatbread", "Flan", "Focaccia", "Four Cheese Pizza", "French Fries", "French Onion Soup", "Fresh Fruit", "Fruit Soup", "Garbanzo", "Garlic", "Gazpacho", "Gefilte Fish", "Gibanica", "Ginger Bread", "Goat Cheese", "Goulash", "Green Beans", "Green Fried Tomatoes", "Green Onion", "Gyoza", "Gyros", "Hawaiian Pizza", "Herbs", "Hoddeok", "Hot and Sour Soup", "Hot Pot", "Hummus", "Hunter's stew", "Ice Cream", "Japchae", "Jasmine Rice", "Jollof Rice", "Kabsa", "Kale", "Katsu Curry", "Kavarma", "Kebabs", "Kimchi Fried Rice", "Kisiel", "Kremowka", "Kreplach", "Kung Pao Chicken", "Kutia", "Lamb", "Lamb Chops", "Lasagna", "Layered Potato Casserole", "Lemon", "Lemon Pie", "Lentil Soup", "Lettuce", "Llapingachos", "Lobster", "Mac and Cheese", "Macarons", "Mahi Mahi", "Mansaf", "Mapo Tofu", "Margherita Pizza", "Marinated", "Marzipan", "Matzo Ball Soup", "Mazurek", "Meat Lover's Pizza", "Meat Patties", "Meatloaf", "Miso Soup", "Mixed Salad", "Mixed Vegetables", "Mooncake", "Moussaka", "Mozarella", "Mushroom Pizza", "Mushroom Soup", "Mushrooms", "Napoleon Cake", "Neapolitan Pizza", "New York Strip Steak", "Nougat Candies", "Onion Rings", "Onion", "Osso Buco", "Oysters", "Pad Thai", "Paella", "Panna Cotta", "Pasta", "Pasta Carbonara", "Pavlova", "Peas", "Pecan Pie", "Peking Duck", "Pelmeni", "Pepperoni Pizza", "Pierogi", "Pineapple", "Pita Bread", "Pizza", "Pljeskavica", "Pork Chops", "Pork Knuckle", "Portobello Mushrooms", "Potato pancakes", "Potato Salad", "Poutine", "Poppy Seed Roll", "Pudding", "Pulled Pork", "Pumpkin", "Pumpkin Pie", "Radish", "Quesadillas", "Quiche", "Ramen", "Ratatouille", "Ravioli", "Red Pepper", "Ribeye Steak", "Ribolita", "Rich Stew", "Risotto alla Milanese", "Roll (Multi-grain)", "Roll (Multigrain)", "Roll (Poppyseed)","Roll (Rye)", "Roll (Sesame)", "Roll (Sourdough)", "Roll (Wheat)", "Roll (White)", "Rugelach", "Rye Bread", "Sachertorte", "Saffron Rice", "Salad", "Salmon", "Sarma", "Sausage", "Sauerkraut", "Seafood Pasta", "Seco de Chivo", "Shashlik", "Shashuka", "Shawarma", "Shepherd's Pie", "Shopska Salad", "Shrimp", "Shrimp Skewers", "Soft Egg Noodles", "Sopes", "Soup Dumplings", "Sour-Dough Bread", "Sour Rye Soup", "Souvlaki", "Spaghetti Carbonara", "Spinach", "Sponge Cake", "Spring Salad", "Spring Rolls", "Stuffed Cabbage", "Stuffed Grape Leaves", "Stuffed Mushrooms", "Stuffed Pepper", "Supreme Pizza", "Sushi", "Swwet and Sour Pork", "Sweet Potato", "Swordfish Steak", "Szarlotka", "T-bone Steak", "Tacos", "Tamales", "Tandoori Chicken", "Teriyaki", "Tarator", "Texas Style Brisket", "Tilapia", "Tiramisu", "Toast", "Tomato", "Tomato Soup", "Tostada", "Tteokbokki", "Tuna Steak", "Tzatziki", "Uszka", "Vareniki", "Veal", "Veggie Fries", "Veggie Pizza", "Wheat Bread", "White Bean Soup", "White Pizza", "Wiener Schnitzel", "Wild Mushroom Pasta", "Wine (Red)", "Wine (White)", "Wonton Soup", "Xiaolongbao", "Zeppelins", "Zucchini" ] # Alphabetically sorted list of diverse cuisines # Unit options for food weight/volume UNIT_OPTIONS = ["grams", "ounce(s)", "teaspoon(s)", "tablespoon(s)", "cup(s)", "slice(s)", "piece(s)"] # Cooking methods COOKING_METHODS = [ "Unknown", "Baked", "Boiled", "Braised", "Breaded and fried", "Broiled", "Creamy", "Deep-fried", "Dried", "Fried", "Grilled", "Grilled minced", "Marinated", "Microwaved", "Pan-seared", "Poached", "Raw", "Roasted", "Sautéed", "Slow-cooked", "Smoked", "Steamed", "Stewed", "Stir-fried", "Takeout/Restaurant" ] # Helper functions def resize_image(image, max_size=512, quality=85): """ Resize image while preserving aspect ratio and reducing file size Args: image: PIL Image object max_size: Maximum dimension (width or height) quality: JPEG quality (0-100) Returns: Resized PIL Image """ # Calculate new dimensions width, height = image.width, image.height # Only resize if the image is larger than max_size if width > max_size or height > max_size: if width > height: new_width = max_size new_height = int(height * (max_size / width)) else: new_height = max_size new_width = int(width * (max_size / height)) # Resize the image resized_img = image.resize((new_width, new_height), Image.LANCZOS) else: # If image is already smaller than max_size, return a copy to avoid modifying original resized_img = image.copy() # Convert to RGB if image has alpha channel (for JPEG conversion) if resized_img.mode == 'RGBA': resized_img = resized_img.convert('RGB') # Compress the image buffer = BytesIO() resized_img.save(buffer, format="JPEG", quality=quality, optimize=True) buffer.seek(0) # Return the compressed image return Image.open(buffer) def get_image_size_kb(image): """Get image file size in KB""" buffer = BytesIO() image.save(buffer, format="JPEG") size_bytes = buffer.tell() return size_bytes / 1024 # Convert to KB def upload_to_s3(image, user_id, folder="", force_quality=None): """ Upload image to S3 bucket and return the S3 path Args: image: PIL Image object user_id: User ID for folder structure folder: Subfolder to store the image in (e.g., "raw-uploads" or "processed-512x512") force_quality: Override default quality settings if specified """ if st.session_state.get("demo_mode", False): return f"demo/{user_id}/demo_image.jpg" try: # Generate a unique ID for the image image_id = str(uuid.uuid4()) timestamp = datetime.now().strftime("%Y%m%d%H%M%S") # Create the S3 path with the appropriate folder structure if folder: s3_path = f"{folder}/{user_id}/{timestamp}_{image_id}.jpg" else: s3_path = f"{user_id}/{timestamp}_{image_id}.jpg" # Convert PIL image to bytes buffer = BytesIO() # Set quality based on folder or forced value if force_quality is not None: quality = force_quality else: # Higher quality for raw uploads, compressed for processed quality = 95 if folder == "raw-uploads" else 85 # Don't compress the image again if it's already been through resize_image # Just save with the appropriate quality image.save(buffer, format="JPEG", quality=quality, optimize=True) buffer.seek(0) # Upload to S3 s3.upload_fileobj(buffer, S3_BUCKET_NAME, s3_path) return s3_path except Exception as e: st.error(f"Failed to upload image: {e}") return None def transcribe_audio(audio_bytes): """Transcribe audio using Hugging Face's Whisper model via Inference API""" try: # Convert audio bytes to file-like object audio_file = BytesIO(audio_bytes) # Free Hugging Face Inference API endpoint for Whisper Tiny model API_URL = "https://api-inference.huggingface.co/models/openai/whisper-tiny" headers = {} if HF_API_TOKEN: headers["Authorization"] = f"Bearer {HF_API_TOKEN}" # Make request to the free HF API response = requests.post( API_URL, headers=headers, data=audio_file ) if response.status_code == 200: result = response.json() # Extract text from response transcript = result.get("text", "") return transcript else: # Fallback for rate limiting or errors st.warning("Could not transcribe audio. Please try typing instead.") return "" except Exception as e: st.error(f"Transcription error: {e}") return "" def parse_food_annotation(transcript, focus_fields=None): """ Parse the transcribed text to extract food details Simple rule-based parsing for common patterns Optional focus_fields parameter to prioritize specific fields """ # Default values parsed_data = { "food_name": "", "portion_size": None, "portion_unit": "", "cooking_method": "Unknown", "ingredients": [] } # Try to extract food name # Start with items from our suggestion list for food in FOOD_SUGGESTIONS: if food.lower() in transcript.lower(): parsed_data["food_name"] = food break # If no match, use the first few words as the food name if not parsed_data["food_name"]: words = transcript.split() if words: # Use first 3 words or less as food name parsed_data["food_name"] = " ".join(words[:min(3, len(words))]) # Try to extract portion size and unit # Look for patterns like "100 grams" or "2 slices" size_match = re.search(r'(\d+(?:\.\d+)?)\s*(grams?|ounces?|cups?|pieces?|slices?)', transcript.lower()) if size_match: try: parsed_data["portion_size"] = float(size_match.group(1)) # Map to our standard units unit_text = size_match.group(2).rstrip('s') # Remove plural 's' if unit_text == "gram": parsed_data["portion_unit"] = "grams" elif unit_text == "ounce": parsed_data["portion_unit"] = "ounce(s)" elif unit_text == "cup": parsed_data["portion_unit"] = "cup(s)" elif unit_text == "slice": parsed_data["portion_unit"] = "slice(s)" elif unit_text == "piece": parsed_data["portion_unit"] = "piece(s)" except: pass # Try to extract cooking method for method in COOKING_METHODS: if method.lower() in transcript.lower(): parsed_data["cooking_method"] = method break # Simple ingredient extraction common_ingredients = ["cheese", "tomato", "lettuce", "onion", "beef", "chicken", "salt", "pepper"] found_ingredients = [] for ingredient in common_ingredients: if ingredient.lower() in transcript.lower(): found_ingredients.append(ingredient.capitalize()) if found_ingredients: parsed_data["ingredients"] = found_ingredients # If focus_fields is provided, prioritize extracting those fields if focus_fields: # More targeted extraction methods for specific fields if "food_name" in focus_fields: # More aggressive food name extraction # e.g., assume the entire transcript might be just the food name if not parsed_data["food_name"]: parsed_data["food_name"] = transcript.strip() if "portion_size" in focus_fields or "portion_unit" in focus_fields: # More aggressive portion extraction # e.g., assume numbers are portion sizes even without units if not parsed_data["portion_size"]: number_match = re.search(r'(\d+(?:\.\d+)?)', transcript) if number_match: parsed_data["portion_size"] = float(number_match.group(1)) parsed_data["portion_unit"] = "piece(s)" # Default unit return parsed_data def save_metadata(user_id, s3_path, food_name, portion_size, portion_unit, cooking_method, ingredients, tokens_awarded): """Save metadata to DynamoDB""" if st.session_state.get("demo_mode", False): st.success("Demo mode: Metadata would be saved to DynamoDB") return True try: # Generate a unique ID for the database entry image_id = str(uuid.uuid4()) timestamp = datetime.now().isoformat() # Ensure portion_size is a Decimal (DynamoDB doesn't support float) if not isinstance(portion_size, Decimal): portion_size = Decimal(str(portion_size)) # Create item for DynamoDB item = { 'image_id': image_id, 'user_id': user_id, 'upload_timestamp': timestamp, 'food_name': food_name, 'portion_size': portion_size, # Decimal type 'portion_unit': portion_unit, 'cooking_method': cooking_method, 'ingredients': ingredients, 's3_path': s3_path, 'tokens_awarded': tokens_awarded } # Save to DynamoDB metadata_table.put_item(Item=item) return True except Exception as e: st.error(f"Failed to save metadata: {e}") return False def calculate_tokens(image_quality, has_metadata, is_unique_category): """Calculate tokens based on various factors""" tokens = 1 # Base token for upload if image_quality == "high": tokens += 1 if has_metadata: tokens += 1 if is_unique_category: tokens += 1 return tokens # Initialize session state for first-time users if "tokens" not in st.session_state: st.session_state["tokens"] = 0 if "uploads_count" not in st.session_state: st.session_state["uploads_count"] = 0 # Initialize food items list for storing multiple annotations if "food_items" not in st.session_state: st.session_state["food_items"] = [] # Initialize form input state variables if "custom_food_name" not in st.session_state: st.session_state["custom_food_name"] = "" if "form_key" not in st.session_state: st.session_state["form_key"] = 0 # Add a form key to force re-rendering # Track partial annotation state for audio recording if "partial_annotation" not in st.session_state: st.session_state["partial_annotation"] = { "food_name": "", "portion_size": None, "portion_unit": "", "cooking_method": "", "ingredients": [] } if "missing_fields" not in st.session_state: st.session_state["missing_fields"] = [] def reset_form_fields(): """Reset all form fields after adding an item by incrementing the form key""" # Reset custom food name st.session_state["custom_food_name"] = "" # Increment the form key to force re-rendering with default values st.session_state["form_key"] = st.session_state.get("form_key", 0) + 1 def add_food_item(food_name, portion_size, portion_unit, cooking_method, ingredients): """Add a food item to the session state""" # Set cooking method to "Unknown" if empty if not cooking_method: cooking_method = "Unknown" if food_name and portion_size and portion_unit: # Cooking method no longer required # Add the food item to the session state st.session_state["food_items"].append({ "food_name": food_name, "portion_size": portion_size, "portion_unit": portion_unit, "cooking_method": cooking_method, "ingredients": ingredients }) st.success(f"✅ Added {food_name} to your submission") reset_form_fields() # Reset form by incrementing key return True else: st.error("❌ Please fill in all required fields") return False # Main App UI def main(): # Check if we should display the mobile welcome dialog if is_mobile() and "mobile_welcome_shown" not in st.session_state: st.session_state["mobile_welcome_shown"] = True # Show welcome message for first-time mobile users st.info("👋 Welcome to the Food Image Crowdsourcing App! Tap the menu icon (≡) in the top-right corner to login.") # Improved authentication UI for mobile if is_mobile(): # Show prominent login button if not logged in if "user_id" not in st.session_state and not st.session_state.get("demo_mode", False): st.title("🍽️ Food Image Crowdsourcing") auth_container = st.container() auth_container.warning("⚠️ Please login to continue") # Big prominent login buttons login_col1, login_col2 = st.columns(2) with login_col1: if st.button("📱 LOGIN", use_container_width=True, type="primary"): st.session_state["sidebar_expanded"] = True st.rerun() with login_col2: if st.button("✍️ SIGN UP", use_container_width=True): st.session_state["sidebar_expanded"] = True st.rerun() st.markdown("### 🍕 Help us collect food images!") st.markdown("Take pictures of your meals, label them, and earn tokens!") # Add links to guidelines and terms st.markdown("### 📚 Learn More") with st.expander("📋 How It Works"): try: with open("PARTICIPATION_GUIDELINES.md", "r") as f: guidelines = f.read() st.markdown(guidelines, unsafe_allow_html=True) except Exception as e: st.error(f"Could not load guidelines: {e}") with st.expander("🪙 Earn Tokens"): try: with open("TOKEN_REWARDS.md", "r") as f: rewards = f.read() st.markdown(rewards, unsafe_allow_html=True) except Exception as e: st.error(f"Could not load rewards information: {e}") st.stop() # Streamlit Layout - Authentication Section in Sidebar st.sidebar.title("🔑 User Authentication") auth_option = st.sidebar.radio("Select an option", ["Login", "Sign Up", "Logout"]) if auth_option == "Sign Up": email = st.sidebar.text_input("Email") password = st.sidebar.text_input("Password", type="password") if st.sidebar.button("Sign Up"): try: if st.session_state.get("demo_mode", False): st.sidebar.success("✅ Demo mode: User created successfully! Please log in.") else: user = auth.create_user(email=email, password=password) st.sidebar.success("✅ User created successfully! Please log in.") # Show continue button after signup if st.sidebar.button("▶️ Continue to Login"): st.rerun() except Exception as e: st.sidebar.error(f"Error: {e}") if auth_option == "Login": email = st.sidebar.text_input("Email") password = st.sidebar.text_input("Password", type="password") if st.sidebar.button("Login"): try: if st.session_state.get("demo_mode", False): st.session_state["user_id"] = "demo_user_123" st.session_state["tokens"] = 0 # Initialize token count st.sidebar.success("✅ Demo mode: Logged in successfully!") # Show continue button after login if st.sidebar.button("▶️ Continue to App"): st.rerun() else: user = auth.get_user_by_email(email) st.session_state["user_id"] = user.uid st.session_state["tokens"] = 0 # Initialize token count st.sidebar.success("✅ Logged in successfully!") # Show continue button after login if st.sidebar.button("▶️ Continue to App"): st.rerun() except Exception as e: st.sidebar.error(f"Login failed: {e}") if auth_option == "Logout" and "user_id" in st.session_state: del st.session_state["user_id"] st.sidebar.success("✅ Logged out successfully!") # Ensure user is logged in before uploading if "user_id" not in st.session_state and not st.session_state.get("demo_mode", False): st.warning("⚠️ Please log in to upload images.") # Add links to guidelines and terms st.markdown("### 📚 While You're Here") st.markdown("Take a moment to read our guidelines and token system:") # Use expanders instead of columns for better document display with st.expander("📋 Participation Guidelines"): try: with open("PARTICIPATION_GUIDELINES.md", "r") as f: guidelines = f.read() st.markdown(guidelines, unsafe_allow_html=True) except Exception as e: st.error(f"Could not load guidelines: {e}") with st.expander("🪙 Token Rewards System"): try: with open("TOKEN_REWARDS.md", "r") as f: rewards = f.read() st.markdown(rewards, unsafe_allow_html=True) except Exception as e: st.error(f"Could not load rewards information: {e}") with st.expander("📜 Terms of Service"): try: with open("TERMS_OF_SERVICE.md", "r") as f: terms = f.read() st.markdown(terms, unsafe_allow_html=True) except Exception as e: st.error(f"Could not load terms: {e}") st.stop() # Streamlit Layout - Main App st.title("🍽️ Food Image Review & Annotation") # Compliance & Disclaimer Section with st.expander("📜 Terms & Conditions", expanded=False): st.markdown("### **Terms & Conditions**") st.write( "By uploading an image, you agree to transfer full copyright to the research team for AI training purposes." " You are responsible for ensuring you own the image and it does not violate any copyright laws." " We do not guarantee when tokens will be redeemable. Keep track of your user ID.") terms_accepted = st.checkbox("I agree to the terms and conditions", key="terms_accepted") if not terms_accepted: st.warning("⚠️ You must agree to the terms before proceeding.") st.stop() # Mobile-friendly workflow indicator if is_mobile(): # Show a progress indicator at the top st.markdown("### 📱 Mobile Workflow") workflow_steps = ["📷 Upload Image", "🔍 Review Image", "🏷️ Add Food Details", "📤 Submit"] # Determine current step current_step = 0 if "original_image" in st.session_state: current_step = 1 if st.session_state["food_items"]: current_step = 2 # Display steps with highlight on current step_cols = st.columns(len(workflow_steps)) for i, (col, step) in enumerate(zip(step_cols, workflow_steps)): if i == current_step: col.markdown(f"**{step}** ✓") else: col.markdown(f"{step}") st.markdown("---") # Upload Image - Larger and more prominent on mobile if is_mobile(): st.markdown("### 📷 Take or Upload a Food Photo") st.info("Take a picture of your meal or upload an existing photo") uploaded_file = st.file_uploader("Upload an image of your food", type=["jpg", "png", "jpeg"]) if uploaded_file: original_img = Image.open(uploaded_file) st.session_state["original_image"] = original_img # If an image has been uploaded, process and display it if "original_image" in st.session_state: original_img = st.session_state["original_image"] # Process the image - resize and compress with more visible difference processed_img = resize_image(original_img, max_size=512, quality=85) st.session_state["processed_image"] = processed_img # Calculate file sizes original_size = get_image_size_kb(original_img) processed_size = get_image_size_kb(processed_img) size_reduction = ((original_size - processed_size) / original_size) * 100 if original_size > 0 else 0 # On mobile, stack images vertically instead of side by side if is_mobile(): st.markdown("### 🔍 Review Your Image") # Original image st.subheader("📷 Original Image") st.markdown(f"
", unsafe_allow_html=True) st.image(original_img, caption=f"Original ({original_img.width}x{original_img.height} px, {original_size:.1f} KB)", use_container_width=True) st.markdown("
", unsafe_allow_html=True) # Processed image st.subheader("🖼️ Processed Image") st.markdown(f"
", unsafe_allow_html=True) st.image(processed_img, caption=f"Processed ({processed_img.width}x{processed_img.height} px, {processed_size:.1f} KB)", use_container_width=True) st.markdown("
", unsafe_allow_html=True) else: # Desktop layout (side by side) col1, col2 = st.columns(2) with col1: st.subheader("📷 Original Image") st.markdown(f"
", unsafe_allow_html=True) st.image(original_img, caption=f"Original ({original_img.width}x{original_img.height} px, {original_size:.1f} KB)", use_container_width=True) st.markdown("
", unsafe_allow_html=True) with col2: st.subheader("🖼️ Processed Image") st.markdown(f"
", unsafe_allow_html=True) st.image(processed_img, caption=f"Processed ({processed_img.width}x{processed_img.height} px, {processed_size:.1f} KB)", use_container_width=True) st.markdown("
", unsafe_allow_html=True) # Show size reduction if size_reduction > 5: # Only show if there's a meaningful reduction st.success(f"✅ Image size reduced by {size_reduction:.1f}% for faster uploads and processing") # Display existing food annotations if any if st.session_state["food_items"]: st.subheader("📋 Added Food Items") for i, item in enumerate(st.session_state["food_items"]): with st.expander(f"🍽️ {item['food_name']} ({item['portion_size']} {item['portion_unit']})"): st.write(f"**Cooking Method:** {item['cooking_method']}") st.write(f"**Ingredients:** {', '.join(item['ingredients'])}") if st.button(f"Remove Item #{i+1}", key=f"remove_{i}"): st.session_state["food_items"].pop(i) st.rerun() # Food metadata form st.subheader("�� Add Food Details") # Use Streamlit form to capture Enter key and provide a better UX # Use a dynamic key based on form_key to force re-rendering with default values form_key = st.session_state.get("form_key", 0) with st.form(key=f"food_item_form_{form_key}"): food_selection = st.selectbox("Food Name", options=[""] + FOOD_SUGGESTIONS, index=0) # Only show custom food name if the dropdown is empty custom_food_name = "" if food_selection == "": custom_food_name = st.text_input("Or enter a custom food name", value=st.session_state["custom_food_name"]) # Determine the actual food name to use food_name = food_selection if food_selection else custom_food_name col1, col2 = st.columns(2) with col1: portion_size = st.number_input("Portion Size", min_value=0.1, step=0.1, format="%.2f", value=0.1) # Always use default values with col2: portion_unit = st.selectbox("Unit", options=UNIT_OPTIONS, index=0) # Always use default values # Set Cooking Method with "Unknown" as the default (index 0) cooking_method = st.selectbox("Cooking Method (optional)", options=COOKING_METHODS, index=0) # Always use default values ingredients = st_tags.st_tags( label="Main Ingredients (Add up to 5)", text="Press enter to add", value=[], suggestions=["Salt", "Pepper", "Olive Oil", "Butter", "Garlic", "Onion", "Tomato"], maxtags=5 ) # Submit button inside the form submitted = st.form_submit_button(label="➕ Add This Food Item") if submitted: if add_food_item(food_name, portion_size, portion_unit, cooking_method, ingredients): # Store the custom food name if needed for future use if custom_food_name: st.session_state["custom_food_name"] = custom_food_name # Don't call reset_form_fields() here, it's already called in add_food_item st.rerun() # Make submit button more prominent st.markdown("---") # More prominent submit button with instructions st.markdown("### 📤 Submit Your Food Annotations") st.info("⚠️ After adding all your food items, click the button below to save your submission and earn tokens.") # Create a larger, more visible submit button submit_col1, submit_col2, submit_col3 = st.columns([1, 2, 1]) with submit_col2: if st.button("📤 SUBMIT ALL FOOD ITEMS", disabled=len(st.session_state["food_items"]) == 0, use_container_width=True, type="primary"): if not st.session_state["food_items"]: st.error("❌ Please add at least one food item before submitting") else: with st.spinner("Processing your submission..."): all_saved = True total_tokens = 0 # Determine image quality (simplified version) image_quality = "high" if original_img.width >= 1000 and original_img.height >= 1000 else "standard" # Get original image file size for comparison original_size = get_image_size_kb(original_img) # Ensure we have a properly processed image with the right settings # Force resize and compression with settings that guarantee size reduction processed_img = resize_image(original_img, max_size=512, quality=85) processed_size = get_image_size_kb(processed_img) # If the processed image isn't smaller enough, reduce quality further if processed_size > original_size * 0.8: # Ensure at least 20% reduction processed_img = resize_image(original_img, max_size=512, quality=70) processed_size = get_image_size_kb(processed_img) # If still not small enough, try more aggressive compression if processed_size > original_size * 0.8: processed_img = resize_image(original_img, max_size=480, quality=60) # Upload original to raw-uploads folder raw_s3_path = upload_to_s3(original_img, st.session_state["user_id"], folder="raw-uploads", force_quality=95) # Upload only one processed image to processed-512x512 folder processed_s3_path = upload_to_s3(processed_img, st.session_state["user_id"], folder="processed-512x512", force_quality=85) if raw_s3_path and processed_s3_path: # Save each food item with the processed image path for food_item in st.session_state["food_items"]: # Check if metadata is complete has_metadata = True # Already validated # Check if the food is in a unique category (simplified) is_unique_category = food_item["food_name"] not in ["Pizza", "Burger", "Pasta", "Salad"] # Calculate tokens for this item tokens_awarded = calculate_tokens(image_quality, has_metadata, is_unique_category) total_tokens += tokens_awarded # Convert float to Decimal for DynamoDB portion_size_decimal = Decimal(str(food_item["portion_size"])) # Save metadata to DynamoDB with processed image path success = save_metadata( st.session_state["user_id"], processed_s3_path, # Use the processed image path food_item["food_name"], portion_size_decimal, # Use Decimal type food_item["portion_unit"], food_item["cooking_method"], food_item["ingredients"], tokens_awarded ) if not success: all_saved = False break if all_saved: st.session_state["tokens"] += total_tokens st.session_state["uploads_count"] += 1 st.success(f"✅ All food items uploaded successfully! You earned {total_tokens} tokens.") # Clear the form and image for a new submission st.session_state.pop("original_image", None) st.session_state.pop("processed_image", None) st.session_state["food_items"] = [] st.rerun() else: st.error("Failed to save some items. Please try again.") else: st.error("Failed to upload images. Please try again.") # Display earned tokens st.sidebar.markdown("---") st.sidebar.subheader("🏆 Your Statistics") st.sidebar.info(f"🪙 Total Tokens: {st.session_state['tokens']}") st.sidebar.info(f"📸 Total Uploads: {st.session_state.get('uploads_count', 0)}") # Help and Documentation Links st.sidebar.markdown("---") st.sidebar.subheader("📚 Resources") if st.sidebar.button("Participation Guidelines"): with open("PARTICIPATION_GUIDELINES.md", "r") as f: guidelines = f.read() st.sidebar.markdown(guidelines) if st.sidebar.button("Token Rewards System"): with open("TOKEN_REWARDS.md", "r") as f: rewards = f.read() st.sidebar.markdown(rewards) if st.sidebar.button("Terms of Service"): with open("TERMS_OF_SERVICE.md", "r") as f: terms = f.read() st.sidebar.markdown(terms) if __name__ == "__main__": main()