Spaces:
Sleeping
Sleeping
File size: 42,202 Bytes
8a7a466 8bb74bc ca3db9f 1731e5c ca3db9f 8bb74bc 8f31dd0 34fb86a 9d30b87 5f31935 8bb74bc 1731e5c a6c5937 094dc67 865085d 496c07a a6c5937 1731e5c 496c07a 865085d a6c5937 496c07a 34fb86a 5f31935 34fb86a a6c5937 5f31935 8bb74bc 71458f9 9d30b87 3af25fd b313446 3af25fd 0d93972 b313446 3af25fd 0d93972 3af25fd 0d93972 3af25fd 0d93972 1aaf940 3af25fd 0d93972 3af25fd 1731e5c 0d93972 1731e5c a97aa78 1aaf940 3af25fd 7fd9926 3af25fd 0d93972 9d30b87 1aaf940 9d30b87 5f31935 71458f9 0d93972 71458f9 5f31935 71458f9 5f31935 a4315e9 b60650d a4315e9 b60650d 5f31935 b60650d 5f31935 a4315e9 71458f9 b60650d 5f31935 1731e5c 5f31935 ca3db9f 5f31935 ca3db9f 5f31935 ca3db9f 79c6a70 472a82c 1731e5c 79c6a70 472a82c 7cfa947 79c6a70 472a82c 79c6a70 71458f9 79c6a70 472a82c 79c6a70 1731e5c 34fb86a 1731e5c 5f31935 094dc67 1731e5c a6c5937 1731e5c 5f31935 1731e5c 79c6a70 1731e5c 79c6a70 1731e5c 79c6a70 1731e5c 79c6a70 1731e5c 79c6a70 1731e5c 79c6a70 1731e5c 71458f9 79c6a70 1731e5c 71458f9 1731e5c ca3db9f 1731e5c 71458f9 1731e5c 71458f9 1731e5c 9d30b87 1f27a2f 5f31935 71458f9 0606552 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 |
import streamlit as st
import json
import os
import uuid
import re
import requests
from datetime import datetime
from io import BytesIO
from decimal import Decimal # Add this import for DynamoDB float handling
# Third-party library imports
import boto3
from PIL import Image
import firebase_admin
from firebase_admin import credentials, auth
import pandas as pd
import streamlit_tags as st_tags
from dotenv import load_dotenv
# Load environment variables from .env file if it exists
load_dotenv()
# Detect if running on mobile
def is_mobile():
# Try to detect mobile browsers based on User-Agent
try:
user_agent = st.get_current_user().user_agent
return any(device in user_agent.lower() for device in ["android", "iphone", "ipad", "mobile"])
except:
# If we can't detect, assume it might be mobile for better experience
return False
# Auto-expand sidebar on mobile
if is_mobile() and "sidebar_expanded" not in st.session_state:
st.session_state["sidebar_expanded"] = True
# Note: This doesn't directly control Streamlit's sidebar, but we'll use this flag
# Custom CSS for better mobile experience
st.markdown("""
<style>
/* Larger buttons for touch interfaces */
.stButton>button {
font-size: 18px !important;
padding: 12px 16px !important;
margin: 6px 0 !important;
}
/* Larger text inputs */
.stTextInput>div>div>input {
font-size: 16px !important;
padding: 10px !important;
}
/* Improve spacing for mobile */
.block-container {
padding-top: 2rem !important;
padding-bottom: 2rem !important;
}
/* Make form elements more touch-friendly */
.stSelectbox, .stNumberInput {
margin-bottom: 12px !important;
}
/* Visual cue for sidebar toggle on mobile */
@media (max-width: 768px) {
[data-testid="stSidebarNav"] {
position: relative;
}
[data-testid="stSidebarNav"]::after {
content: "π Menu";
position: absolute;
right: -60px;
top: 0;
background: #f0f2f6;
padding: 8px;
border-radius: 4px;
animation: pulse 2s infinite;
z-index: 1000;
}
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.6; }
100% { opacity: 1; }
}
}
</style>
""", unsafe_allow_html=True)
# Load AWS credentials using correct HF Secrets
AWS_ACCESS_KEY = os.getenv("AWS_ACCESS_KEY")
AWS_SECRET_KEY = os.getenv("AWS_SECRET_KEY")
AWS_REGION = os.getenv("AWS_REGION", "us-east-1")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME", "food-image-crowdsourcing")
DYNAMODB_TABLE = os.getenv("DYNAMODB_TABLE", "image_metadata")
HF_API_TOKEN = os.getenv("HF_API_TOKEN", "") # For Hugging Face Inference API
# Load Firebase credentials
FIREBASE_CONFIG = json.loads(os.getenv("FIREBASE_CONFIG", "{}"))
# Initialize Firebase Admin SDK (Prevent multiple initialization)
if not firebase_admin._apps:
try:
cred = credentials.Certificate(FIREBASE_CONFIG)
firebase_admin.initialize_app(cred)
except Exception as e:
st.error(f"Firebase initialization error: {e}")
if st.button("Continue in Demo Mode"):
st.session_state["demo_mode"] = True
else:
st.stop()
# Initialize AWS Services (S3 & DynamoDB)
try:
s3 = boto3.client(
"s3",
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
region_name=AWS_REGION
)
dynamodb = boto3.resource(
"dynamodb",
region_name=AWS_REGION,
aws_access_key_id=AWS_ACCESS_KEY,
aws_secret_access_key=AWS_SECRET_KEY,
)
metadata_table = dynamodb.Table(DYNAMODB_TABLE)
except Exception as e:
st.error(f"AWS initialization error: {e}")
if st.button("Continue in Demo Mode"):
st.session_state["demo_mode"] = True
else:
st.stop()
# Food Intellisense List
FOOD_SUGGESTIONS = [
"Ajvar", "Angel Wings", "Apple", "Apple Pie", "Apfelstrudel", "Arancini", "Asparagus", "Babka", "Bagel","Baguette", "Baklava",
"Banana", "Banana Bread", "Banh Mi", "Banitsa", "Barbecue Ribs", "BBQ Chicken", "BBQ Chicken Pizza", "BBQ Ribs", "Bean Buritto",
"Bear Claw", "Beef Empanadas", "Beef Pho", "Beef Sirloin", "Beef Stroganoff", "Beer", "Beets", "Bell Pepper", "Biryani", "Bistecca alla Fiorentina",
"Black Beans", "Black Forest Cake", "Black Olives", "Blini", "Borscht", "Bossam", "Brioche", "Broccoli", "Brown Rice",
"Bruschetta", "Brussels Sprouts", "Buckwheat", "Buffalo Wings", "Burger", "Burrito", "Butter Chicken", "Cabbage",
"Cabbage Rolls", "Calzone", "Cannoli", "Carrot", "Carrot Cake", "Cauliflower", "Cauliflower Soup", "Cevapi", "Ceviche", "Ceviche de Camaron",
"Challah", "Char Siu", "Cheese Empanadas", "Cheesecake", "Chicken", "Chicken Broth", "Chicken Empanadas",
"Chicken Wings", "Chickpeas", "Chiles en Nogada", "Chili Sauce", "Chimichirri Steak", "Chow Mein",
"Clams", "Cold Beet Soup", "Corn", "Corn on the Cob", "Coxinha", "Crab Cakes", "Cream Cheese", "Creamy Mushroom Risotto",
"Creme Brulee", "Creole Gumbo", "Croissant", "Croque Monsieur", "Cucumber", "Cucumber Soup", "Deep-fried",
"Dim Sum", "Dolmades", "Doughnuts", "Duck", "Eggplant", "Eggplant Spread", "Eggs", "Enchiladas",
"Encebollado", "Falafel", "Fanesca", "Fasolada", "Faworki", "Filet Mignon", "Fish", "Fish and Chips",
"Fish Tacos", "Flatbread", "Flan", "Focaccia", "Four Cheese Pizza", "French Fries", "French Onion Soup",
"Fresh Fruit", "Fruit Soup", "Garbanzo", "Garlic", "Gazpacho", "Gefilte Fish", "Gibanica", "Ginger Bread",
"Goat Cheese", "Goulash", "Green Beans", "Green Fried Tomatoes", "Green Onion", "Gyoza", "Gyros", "Hawaiian Pizza",
"Herbs", "Hoddeok", "Hot and Sour Soup", "Hot Pot", "Hummus", "Hunter's stew", "Ice Cream", "Japchae",
"Jasmine Rice", "Jollof Rice", "Kabsa", "Kale", "Katsu Curry", "Kavarma", "Kebabs", "Kimchi Fried Rice", "Kisiel",
"Kremowka", "Kreplach", "Kung Pao Chicken", "Kutia", "Lamb", "Lamb Chops", "Lasagna", "Layered Potato Casserole",
"Lemon", "Lemon Pie", "Lentil Soup", "Lettuce", "Llapingachos", "Lobster", "Mac and Cheese", "Macarons", "Mahi Mahi",
"Mansaf", "Mapo Tofu", "Margherita Pizza", "Marinated", "Marzipan", "Matzo Ball Soup", "Mazurek", "Meat Lover's Pizza",
"Meat Patties", "Meatloaf", "Miso Soup", "Mixed Salad", "Mixed Vegetables", "Mooncake", "Moussaka", "Mozarella", "Mushroom Pizza", "Mushroom Soup",
"Mushrooms", "Napoleon Cake", "Neapolitan Pizza", "New York Strip Steak", "Nougat Candies", "Onion Rings", "Onion",
"Osso Buco", "Oysters", "Pad Thai", "Paella", "Panna Cotta", "Pasta", "Pasta Carbonara", "Pavlova",
"Peas", "Pecan Pie", "Peking Duck", "Pelmeni", "Pepperoni Pizza", "Pierogi", "Pineapple", "Pita Bread",
"Pizza", "Pljeskavica", "Pork Chops", "Pork Knuckle", "Portobello Mushrooms", "Potato pancakes", "Potato Salad",
"Poutine", "Poppy Seed Roll", "Pudding", "Pulled Pork", "Pumpkin", "Pumpkin Pie", "Radish", "Quesadillas", "Quiche", "Ramen", "Ratatouille",
"Ravioli", "Red Pepper", "Ribeye Steak", "Ribolita", "Rich Stew", "Risotto alla Milanese", "Roll (Multi-grain)", "Roll (Multigrain)",
"Roll (Poppyseed)","Roll (Rye)", "Roll (Sesame)", "Roll (Sourdough)", "Roll (Wheat)", "Roll (White)", "Rugelach", "Rye Bread",
"Sachertorte", "Saffron Rice", "Salad", "Salmon", "Sarma", "Sausage", "Sauerkraut", "Seafood Pasta",
"Seco de Chivo", "Shashlik", "Shashuka", "Shawarma", "Shepherd's Pie", "Shopska Salad", "Shrimp", "Shrimp Skewers",
"Soft Egg Noodles", "Sopes", "Soup Dumplings", "Sour-Dough Bread", "Sour Rye Soup", "Souvlaki", "Spaghetti Carbonara", "Spinach", "Sponge Cake",
"Spring Salad", "Spring Rolls", "Stuffed Cabbage", "Stuffed Grape Leaves", "Stuffed Mushrooms", "Stuffed Pepper", "Supreme Pizza", "Sushi",
"Swwet and Sour Pork", "Sweet Potato", "Swordfish Steak", "Szarlotka", "T-bone Steak", "Tacos", "Tamales", "Tandoori Chicken", "Teriyaki", "Tarator",
"Texas Style Brisket", "Tilapia", "Tiramisu", "Toast", "Tomato", "Tomato Soup", "Tostada", "Tteokbokki", "Tuna Steak",
"Tzatziki", "Uszka", "Vareniki", "Veal", "Veggie Fries", "Veggie Pizza", "Wheat Bread", "White Bean Soup", "White Pizza",
"Wiener Schnitzel", "Wild Mushroom Pasta", "Wine (Red)", "Wine (White)", "Wonton Soup", "Xiaolongbao", "Zeppelins", "Zucchini"
] # Alphabetically sorted list of diverse cuisines
# Unit options for food weight/volume
UNIT_OPTIONS = ["grams", "ounce(s)", "teaspoon(s)", "tablespoon(s)", "cup(s)", "slice(s)", "piece(s)"]
# Cooking methods
COOKING_METHODS = [
"Unknown", "Baked", "Boiled", "Braised", "Breaded and fried", "Broiled", "Creamy", "Deep-fried", "Dried",
"Fried", "Grilled", "Grilled minced", "Marinated", "Microwaved", "Pan-seared", "Poached", "Raw",
"Roasted", "SautΓ©ed", "Slow-cooked", "Smoked", "Steamed", "Stewed", "Stir-fried", "Takeout/Restaurant"
]
# Helper functions
def resize_image(image, max_size=512, quality=85):
"""
Resize image while preserving aspect ratio and reducing file size
Args:
image: PIL Image object
max_size: Maximum dimension (width or height)
quality: JPEG quality (0-100)
Returns:
Resized PIL Image
"""
# Calculate new dimensions
width, height = image.width, image.height
# Only resize if the image is larger than max_size
if width > max_size or height > max_size:
if width > height:
new_width = max_size
new_height = int(height * (max_size / width))
else:
new_height = max_size
new_width = int(width * (max_size / height))
# Resize the image
resized_img = image.resize((new_width, new_height), Image.LANCZOS)
else:
# If image is already smaller than max_size, return a copy to avoid modifying original
resized_img = image.copy()
# Convert to RGB if image has alpha channel (for JPEG conversion)
if resized_img.mode == 'RGBA':
resized_img = resized_img.convert('RGB')
# Compress the image
buffer = BytesIO()
resized_img.save(buffer, format="JPEG", quality=quality, optimize=True)
buffer.seek(0)
# Return the compressed image
return Image.open(buffer)
def get_image_size_kb(image):
"""Get image file size in KB"""
buffer = BytesIO()
image.save(buffer, format="JPEG")
size_bytes = buffer.tell()
return size_bytes / 1024 # Convert to KB
def upload_to_s3(image, user_id, folder="", force_quality=None):
"""
Upload image to S3 bucket and return the S3 path
Args:
image: PIL Image object
user_id: User ID for folder structure
folder: Subfolder to store the image in (e.g., "raw-uploads" or "processed-512x512")
force_quality: Override default quality settings if specified
"""
if st.session_state.get("demo_mode", False):
return f"demo/{user_id}/demo_image.jpg"
try:
# Generate a unique ID for the image
image_id = str(uuid.uuid4())
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
# Create the S3 path with the appropriate folder structure
if folder:
s3_path = f"{folder}/{user_id}/{timestamp}_{image_id}.jpg"
else:
s3_path = f"{user_id}/{timestamp}_{image_id}.jpg"
# Convert PIL image to bytes
buffer = BytesIO()
# Set quality based on folder or forced value
if force_quality is not None:
quality = force_quality
else:
# Higher quality for raw uploads, compressed for processed
quality = 95 if folder == "raw-uploads" else 85
# Don't compress the image again if it's already been through resize_image
# Just save with the appropriate quality
image.save(buffer, format="JPEG", quality=quality, optimize=True)
buffer.seek(0)
# Upload to S3
s3.upload_fileobj(buffer, S3_BUCKET_NAME, s3_path)
return s3_path
except Exception as e:
st.error(f"Failed to upload image: {e}")
return None
def transcribe_audio(audio_bytes):
"""Transcribe audio using Hugging Face's Whisper model via Inference API"""
try:
# Convert audio bytes to file-like object
audio_file = BytesIO(audio_bytes)
# Free Hugging Face Inference API endpoint for Whisper Tiny model
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-tiny"
headers = {}
if HF_API_TOKEN:
headers["Authorization"] = f"Bearer {HF_API_TOKEN}"
# Make request to the free HF API
response = requests.post(
API_URL,
headers=headers,
data=audio_file
)
if response.status_code == 200:
result = response.json()
# Extract text from response
transcript = result.get("text", "")
return transcript
else:
# Fallback for rate limiting or errors
st.warning("Could not transcribe audio. Please try typing instead.")
return ""
except Exception as e:
st.error(f"Transcription error: {e}")
return ""
def parse_food_annotation(transcript, focus_fields=None):
"""
Parse the transcribed text to extract food details
Simple rule-based parsing for common patterns
Optional focus_fields parameter to prioritize specific fields
"""
# Default values
parsed_data = {
"food_name": "",
"portion_size": None,
"portion_unit": "",
"cooking_method": "Unknown",
"ingredients": []
}
# Try to extract food name
# Start with items from our suggestion list
for food in FOOD_SUGGESTIONS:
if food.lower() in transcript.lower():
parsed_data["food_name"] = food
break
# If no match, use the first few words as the food name
if not parsed_data["food_name"]:
words = transcript.split()
if words:
# Use first 3 words or less as food name
parsed_data["food_name"] = " ".join(words[:min(3, len(words))])
# Try to extract portion size and unit
# Look for patterns like "100 grams" or "2 slices"
size_match = re.search(r'(\d+(?:\.\d+)?)\s*(grams?|ounces?|cups?|pieces?|slices?)', transcript.lower())
if size_match:
try:
parsed_data["portion_size"] = float(size_match.group(1))
# Map to our standard units
unit_text = size_match.group(2).rstrip('s') # Remove plural 's'
if unit_text == "gram":
parsed_data["portion_unit"] = "grams"
elif unit_text == "ounce":
parsed_data["portion_unit"] = "ounce(s)"
elif unit_text == "cup":
parsed_data["portion_unit"] = "cup(s)"
elif unit_text == "slice":
parsed_data["portion_unit"] = "slice(s)"
elif unit_text == "piece":
parsed_data["portion_unit"] = "piece(s)"
except:
pass
# Try to extract cooking method
for method in COOKING_METHODS:
if method.lower() in transcript.lower():
parsed_data["cooking_method"] = method
break
# Simple ingredient extraction
common_ingredients = ["cheese", "tomato", "lettuce", "onion", "beef", "chicken", "salt", "pepper"]
found_ingredients = []
for ingredient in common_ingredients:
if ingredient.lower() in transcript.lower():
found_ingredients.append(ingredient.capitalize())
if found_ingredients:
parsed_data["ingredients"] = found_ingredients
# If focus_fields is provided, prioritize extracting those fields
if focus_fields:
# More targeted extraction methods for specific fields
if "food_name" in focus_fields:
# More aggressive food name extraction
# e.g., assume the entire transcript might be just the food name
if not parsed_data["food_name"]:
parsed_data["food_name"] = transcript.strip()
if "portion_size" in focus_fields or "portion_unit" in focus_fields:
# More aggressive portion extraction
# e.g., assume numbers are portion sizes even without units
if not parsed_data["portion_size"]:
number_match = re.search(r'(\d+(?:\.\d+)?)', transcript)
if number_match:
parsed_data["portion_size"] = float(number_match.group(1))
parsed_data["portion_unit"] = "piece(s)" # Default unit
return parsed_data
def save_metadata(user_id, s3_path, food_name, portion_size, portion_unit, cooking_method, ingredients, tokens_awarded):
"""Save metadata to DynamoDB"""
if st.session_state.get("demo_mode", False):
st.success("Demo mode: Metadata would be saved to DynamoDB")
return True
try:
# Generate a unique ID for the database entry
image_id = str(uuid.uuid4())
timestamp = datetime.now().isoformat()
# Ensure portion_size is a Decimal (DynamoDB doesn't support float)
if not isinstance(portion_size, Decimal):
portion_size = Decimal(str(portion_size))
# Create item for DynamoDB
item = {
'image_id': image_id,
'user_id': user_id,
'upload_timestamp': timestamp,
'food_name': food_name,
'portion_size': portion_size, # Decimal type
'portion_unit': portion_unit,
'cooking_method': cooking_method,
'ingredients': ingredients,
's3_path': s3_path,
'tokens_awarded': tokens_awarded
}
# Save to DynamoDB
metadata_table.put_item(Item=item)
return True
except Exception as e:
st.error(f"Failed to save metadata: {e}")
return False
def calculate_tokens(image_quality, has_metadata, is_unique_category):
"""Calculate tokens based on various factors"""
tokens = 1 # Base token for upload
if image_quality == "high":
tokens += 1
if has_metadata:
tokens += 1
if is_unique_category:
tokens += 1
return tokens
# Initialize session state for first-time users
if "tokens" not in st.session_state:
st.session_state["tokens"] = 0
if "uploads_count" not in st.session_state:
st.session_state["uploads_count"] = 0
# Initialize food items list for storing multiple annotations
if "food_items" not in st.session_state:
st.session_state["food_items"] = []
# Initialize form input state variables
if "custom_food_name" not in st.session_state:
st.session_state["custom_food_name"] = ""
if "form_key" not in st.session_state:
st.session_state["form_key"] = 0 # Add a form key to force re-rendering
# Track partial annotation state for audio recording
if "partial_annotation" not in st.session_state:
st.session_state["partial_annotation"] = {
"food_name": "",
"portion_size": None,
"portion_unit": "",
"cooking_method": "",
"ingredients": []
}
if "missing_fields" not in st.session_state:
st.session_state["missing_fields"] = []
def reset_form_fields():
"""Reset all form fields after adding an item by incrementing the form key"""
# Reset custom food name
st.session_state["custom_food_name"] = ""
# Increment the form key to force re-rendering with default values
st.session_state["form_key"] = st.session_state.get("form_key", 0) + 1
def add_food_item(food_name, portion_size, portion_unit, cooking_method, ingredients):
"""Add a food item to the session state"""
# Set cooking method to "Unknown" if empty
if not cooking_method:
cooking_method = "Unknown"
if food_name and portion_size and portion_unit: # Cooking method no longer required
# Add the food item to the session state
st.session_state["food_items"].append({
"food_name": food_name,
"portion_size": portion_size,
"portion_unit": portion_unit,
"cooking_method": cooking_method,
"ingredients": ingredients
})
st.success(f"β
Added {food_name} to your submission")
reset_form_fields() # Reset form by incrementing key
return True
else:
st.error("β Please fill in all required fields")
return False
# Main App UI
def main():
# Check if we should display the mobile welcome dialog
if is_mobile() and "mobile_welcome_shown" not in st.session_state:
st.session_state["mobile_welcome_shown"] = True
# Show welcome message for first-time mobile users
st.info("π Welcome to the Food Image Crowdsourcing App! Tap the menu icon (β‘) in the top-right corner to login.")
# Improved authentication UI for mobile
if is_mobile():
# Show prominent login button if not logged in
if "user_id" not in st.session_state and not st.session_state.get("demo_mode", False):
st.title("π½οΈ Food Image Crowdsourcing")
auth_container = st.container()
auth_container.warning("β οΈ Please login to continue")
# Big prominent login buttons
login_col1, login_col2 = st.columns(2)
with login_col1:
if st.button("π± LOGIN", use_container_width=True, type="primary"):
st.session_state["sidebar_expanded"] = True
st.rerun()
with login_col2:
if st.button("βοΈ SIGN UP", use_container_width=True):
st.session_state["sidebar_expanded"] = True
st.rerun()
st.markdown("### π Help us collect food images!")
st.markdown("Take pictures of your meals, label them, and earn tokens!")
# Add links to guidelines and terms
st.markdown("### π Learn More")
with st.expander("π How It Works"):
try:
with open("PARTICIPATION_GUIDELINES.md", "r") as f:
guidelines = f.read()
st.markdown(guidelines, unsafe_allow_html=True)
except Exception as e:
st.error(f"Could not load guidelines: {e}")
with st.expander("πͺ Earn Tokens"):
try:
with open("TOKEN_REWARDS.md", "r") as f:
rewards = f.read()
st.markdown(rewards, unsafe_allow_html=True)
except Exception as e:
st.error(f"Could not load rewards information: {e}")
st.stop()
# Streamlit Layout - Authentication Section in Sidebar
st.sidebar.title("π User Authentication")
auth_option = st.sidebar.radio("Select an option", ["Login", "Sign Up", "Logout"])
if auth_option == "Sign Up":
email = st.sidebar.text_input("Email")
password = st.sidebar.text_input("Password", type="password")
if st.sidebar.button("Sign Up"):
try:
if st.session_state.get("demo_mode", False):
st.sidebar.success("β
Demo mode: User created successfully! Please log in.")
else:
user = auth.create_user(email=email, password=password)
st.sidebar.success("β
User created successfully! Please log in.")
# Show continue button after signup
if st.sidebar.button("βΆοΈ Continue to Login"):
st.rerun()
except Exception as e:
st.sidebar.error(f"Error: {e}")
if auth_option == "Login":
email = st.sidebar.text_input("Email")
password = st.sidebar.text_input("Password", type="password")
if st.sidebar.button("Login"):
try:
if st.session_state.get("demo_mode", False):
st.session_state["user_id"] = "demo_user_123"
st.session_state["tokens"] = 0 # Initialize token count
st.sidebar.success("β
Demo mode: Logged in successfully!")
# Show continue button after login
if st.sidebar.button("βΆοΈ Continue to App"):
st.rerun()
else:
user = auth.get_user_by_email(email)
st.session_state["user_id"] = user.uid
st.session_state["tokens"] = 0 # Initialize token count
st.sidebar.success("β
Logged in successfully!")
# Show continue button after login
if st.sidebar.button("βΆοΈ Continue to App"):
st.rerun()
except Exception as e:
st.sidebar.error(f"Login failed: {e}")
if auth_option == "Logout" and "user_id" in st.session_state:
del st.session_state["user_id"]
st.sidebar.success("β
Logged out successfully!")
# Ensure user is logged in before uploading
if "user_id" not in st.session_state and not st.session_state.get("demo_mode", False):
st.warning("β οΈ Please log in to upload images.")
# Add links to guidelines and terms
st.markdown("### π While You're Here")
st.markdown("Take a moment to read our guidelines and token system:")
# Use expanders instead of columns for better document display
with st.expander("π Participation Guidelines"):
try:
with open("PARTICIPATION_GUIDELINES.md", "r") as f:
guidelines = f.read()
st.markdown(guidelines, unsafe_allow_html=True)
except Exception as e:
st.error(f"Could not load guidelines: {e}")
with st.expander("πͺ Token Rewards System"):
try:
with open("TOKEN_REWARDS.md", "r") as f:
rewards = f.read()
st.markdown(rewards, unsafe_allow_html=True)
except Exception as e:
st.error(f"Could not load rewards information: {e}")
with st.expander("π Terms of Service"):
try:
with open("TERMS_OF_SERVICE.md", "r") as f:
terms = f.read()
st.markdown(terms, unsafe_allow_html=True)
except Exception as e:
st.error(f"Could not load terms: {e}")
st.stop()
# Streamlit Layout - Main App
st.title("π½οΈ Food Image Review & Annotation")
# Compliance & Disclaimer Section
with st.expander("π Terms & Conditions", expanded=False):
st.markdown("### **Terms & Conditions**")
st.write(
"By uploading an image, you agree to transfer full copyright to the research team for AI training purposes."
" You are responsible for ensuring you own the image and it does not violate any copyright laws."
" We do not guarantee when tokens will be redeemable. Keep track of your user ID.")
terms_accepted = st.checkbox("I agree to the terms and conditions", key="terms_accepted")
if not terms_accepted:
st.warning("β οΈ You must agree to the terms before proceeding.")
st.stop()
# Mobile-friendly workflow indicator
if is_mobile():
# Show a progress indicator at the top
st.markdown("### π± Mobile Workflow")
workflow_steps = ["π· Upload Image", "π Review Image", "π·οΈ Add Food Details", "π€ Submit"]
# Determine current step
current_step = 0
if "original_image" in st.session_state:
current_step = 1
if st.session_state["food_items"]:
current_step = 2
# Display steps with highlight on current
step_cols = st.columns(len(workflow_steps))
for i, (col, step) in enumerate(zip(step_cols, workflow_steps)):
if i == current_step:
col.markdown(f"**{step}** β")
else:
col.markdown(f"{step}")
st.markdown("---")
# Upload Image - Larger and more prominent on mobile
if is_mobile():
st.markdown("### π· Take or Upload a Food Photo")
st.info("Take a picture of your meal or upload an existing photo")
uploaded_file = st.file_uploader("Upload an image of your food", type=["jpg", "png", "jpeg"])
if uploaded_file:
original_img = Image.open(uploaded_file)
st.session_state["original_image"] = original_img
# If an image has been uploaded, process and display it
if "original_image" in st.session_state:
original_img = st.session_state["original_image"]
# Process the image - resize and compress with more visible difference
processed_img = resize_image(original_img, max_size=512, quality=85)
st.session_state["processed_image"] = processed_img
# Calculate file sizes
original_size = get_image_size_kb(original_img)
processed_size = get_image_size_kb(processed_img)
size_reduction = ((original_size - processed_size) / original_size) * 100 if original_size > 0 else 0
# On mobile, stack images vertically instead of side by side
if is_mobile():
st.markdown("### π Review Your Image")
# Original image
st.subheader("π· Original Image")
st.markdown(f"<div style='border:2px solid red;padding:5px;'>", unsafe_allow_html=True)
st.image(original_img, caption=f"Original ({original_img.width}x{original_img.height} px, {original_size:.1f} KB)", use_container_width=True)
st.markdown("</div>", unsafe_allow_html=True)
# Processed image
st.subheader("πΌοΈ Processed Image")
st.markdown(f"<div style='border:2px solid green;padding:5px;'>", unsafe_allow_html=True)
st.image(processed_img, caption=f"Processed ({processed_img.width}x{processed_img.height} px, {processed_size:.1f} KB)", use_container_width=True)
st.markdown("</div>", unsafe_allow_html=True)
else:
# Desktop layout (side by side)
col1, col2 = st.columns(2)
with col1:
st.subheader("π· Original Image")
st.markdown(f"<div style='border:2px solid red;padding:5px;'>", unsafe_allow_html=True)
st.image(original_img, caption=f"Original ({original_img.width}x{original_img.height} px, {original_size:.1f} KB)", use_container_width=True)
st.markdown("</div>", unsafe_allow_html=True)
with col2:
st.subheader("πΌοΈ Processed Image")
st.markdown(f"<div style='border:2px solid green;padding:5px;'>", unsafe_allow_html=True)
st.image(processed_img, caption=f"Processed ({processed_img.width}x{processed_img.height} px, {processed_size:.1f} KB)", use_container_width=True)
st.markdown("</div>", unsafe_allow_html=True)
# Show size reduction
if size_reduction > 5: # Only show if there's a meaningful reduction
st.success(f"β
Image size reduced by {size_reduction:.1f}% for faster uploads and processing")
# Display existing food annotations if any
if st.session_state["food_items"]:
st.subheader("π Added Food Items")
for i, item in enumerate(st.session_state["food_items"]):
with st.expander(f"π½οΈ {item['food_name']} ({item['portion_size']} {item['portion_unit']})"):
st.write(f"**Cooking Method:** {item['cooking_method']}")
st.write(f"**Ingredients:** {', '.join(item['ingredients'])}")
if st.button(f"Remove Item #{i+1}", key=f"remove_{i}"):
st.session_state["food_items"].pop(i)
st.rerun()
# Food metadata form
st.subheader("οΏ½οΏ½ Add Food Details")
# Use Streamlit form to capture Enter key and provide a better UX
# Use a dynamic key based on form_key to force re-rendering with default values
form_key = st.session_state.get("form_key", 0)
with st.form(key=f"food_item_form_{form_key}"):
food_selection = st.selectbox("Food Name", options=[""] + FOOD_SUGGESTIONS, index=0)
# Only show custom food name if the dropdown is empty
custom_food_name = ""
if food_selection == "":
custom_food_name = st.text_input("Or enter a custom food name",
value=st.session_state["custom_food_name"])
# Determine the actual food name to use
food_name = food_selection if food_selection else custom_food_name
col1, col2 = st.columns(2)
with col1:
portion_size = st.number_input("Portion Size",
min_value=0.1,
step=0.1,
format="%.2f",
value=0.1) # Always use default values
with col2:
portion_unit = st.selectbox("Unit",
options=UNIT_OPTIONS,
index=0) # Always use default values
# Set Cooking Method with "Unknown" as the default (index 0)
cooking_method = st.selectbox("Cooking Method (optional)",
options=COOKING_METHODS,
index=0) # Always use default values
ingredients = st_tags.st_tags(
label="Main Ingredients (Add up to 5)",
text="Press enter to add",
value=[],
suggestions=["Salt", "Pepper", "Olive Oil", "Butter", "Garlic", "Onion", "Tomato"],
maxtags=5
)
# Submit button inside the form
submitted = st.form_submit_button(label="β Add This Food Item")
if submitted:
if add_food_item(food_name, portion_size, portion_unit, cooking_method, ingredients):
# Store the custom food name if needed for future use
if custom_food_name:
st.session_state["custom_food_name"] = custom_food_name
# Don't call reset_form_fields() here, it's already called in add_food_item
st.rerun()
# Make submit button more prominent
st.markdown("---")
# More prominent submit button with instructions
st.markdown("### π€ Submit Your Food Annotations")
st.info("β οΈ After adding all your food items, click the button below to save your submission and earn tokens.")
# Create a larger, more visible submit button
submit_col1, submit_col2, submit_col3 = st.columns([1, 2, 1])
with submit_col2:
if st.button("π€ SUBMIT ALL FOOD ITEMS",
disabled=len(st.session_state["food_items"]) == 0,
use_container_width=True,
type="primary"):
if not st.session_state["food_items"]:
st.error("β Please add at least one food item before submitting")
else:
with st.spinner("Processing your submission..."):
all_saved = True
total_tokens = 0
# Determine image quality (simplified version)
image_quality = "high" if original_img.width >= 1000 and original_img.height >= 1000 else "standard"
# Get original image file size for comparison
original_size = get_image_size_kb(original_img)
# Ensure we have a properly processed image with the right settings
# Force resize and compression with settings that guarantee size reduction
processed_img = resize_image(original_img, max_size=512, quality=85)
processed_size = get_image_size_kb(processed_img)
# If the processed image isn't smaller enough, reduce quality further
if processed_size > original_size * 0.8: # Ensure at least 20% reduction
processed_img = resize_image(original_img, max_size=512, quality=70)
processed_size = get_image_size_kb(processed_img)
# If still not small enough, try more aggressive compression
if processed_size > original_size * 0.8:
processed_img = resize_image(original_img, max_size=480, quality=60)
# Upload original to raw-uploads folder
raw_s3_path = upload_to_s3(original_img, st.session_state["user_id"],
folder="raw-uploads", force_quality=95)
# Upload only one processed image to processed-512x512 folder
processed_s3_path = upload_to_s3(processed_img, st.session_state["user_id"],
folder="processed-512x512", force_quality=85)
if raw_s3_path and processed_s3_path:
# Save each food item with the processed image path
for food_item in st.session_state["food_items"]:
# Check if metadata is complete
has_metadata = True # Already validated
# Check if the food is in a unique category (simplified)
is_unique_category = food_item["food_name"] not in ["Pizza", "Burger", "Pasta", "Salad"]
# Calculate tokens for this item
tokens_awarded = calculate_tokens(image_quality, has_metadata, is_unique_category)
total_tokens += tokens_awarded
# Convert float to Decimal for DynamoDB
portion_size_decimal = Decimal(str(food_item["portion_size"]))
# Save metadata to DynamoDB with processed image path
success = save_metadata(
st.session_state["user_id"],
processed_s3_path, # Use the processed image path
food_item["food_name"],
portion_size_decimal, # Use Decimal type
food_item["portion_unit"],
food_item["cooking_method"],
food_item["ingredients"],
tokens_awarded
)
if not success:
all_saved = False
break
if all_saved:
st.session_state["tokens"] += total_tokens
st.session_state["uploads_count"] += 1
st.success(f"β
All food items uploaded successfully! You earned {total_tokens} tokens.")
# Clear the form and image for a new submission
st.session_state.pop("original_image", None)
st.session_state.pop("processed_image", None)
st.session_state["food_items"] = []
st.rerun()
else:
st.error("Failed to save some items. Please try again.")
else:
st.error("Failed to upload images. Please try again.")
# Display earned tokens
st.sidebar.markdown("---")
st.sidebar.subheader("π Your Statistics")
st.sidebar.info(f"πͺ Total Tokens: {st.session_state['tokens']}")
st.sidebar.info(f"πΈ Total Uploads: {st.session_state.get('uploads_count', 0)}")
# Help and Documentation Links
st.sidebar.markdown("---")
st.sidebar.subheader("π Resources")
if st.sidebar.button("Participation Guidelines"):
with open("PARTICIPATION_GUIDELINES.md", "r") as f:
guidelines = f.read()
st.sidebar.markdown(guidelines)
if st.sidebar.button("Token Rewards System"):
with open("TOKEN_REWARDS.md", "r") as f:
rewards = f.read()
st.sidebar.markdown(rewards)
if st.sidebar.button("Terms of Service"):
with open("TERMS_OF_SERVICE.md", "r") as f:
terms = f.read()
st.sidebar.markdown(terms)
if __name__ == "__main__":
main()
|