Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,9 @@ import logging
|
|
3 |
import gradio as gr
|
4 |
import asyncio
|
5 |
from dotenv import load_dotenv
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from
|
9 |
from langchain_groq import ChatGroq
|
10 |
from PyPDF2 import PdfReader
|
11 |
from huggingface_hub import login
|
@@ -24,14 +24,11 @@ if not HUGGING_API_KEY or not GROQ_API_KEY:
|
|
24 |
logging.basicConfig(level=logging.INFO)
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
-
# Authenticate with Hugging Face
|
28 |
login(HUGGING_API_KEY)
|
29 |
|
30 |
-
# Load models and embeddings with a
|
31 |
-
embedding_model =
|
32 |
-
huggingfacehub_api_token=HUGGING_API_KEY,
|
33 |
-
model_id="sentence-transformers/all-MiniLM-L6-v2" # Explicitly set a proper embedding model
|
34 |
-
)
|
35 |
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192", api_key=GROQ_API_KEY)
|
36 |
client = AsyncGroq(api_key=GROQ_API_KEY)
|
37 |
|
@@ -39,7 +36,7 @@ client = AsyncGroq(api_key=GROQ_API_KEY)
|
|
39 |
pdf_vector_store = None
|
40 |
current_pdf_path = None
|
41 |
|
42 |
-
# General Chat
|
43 |
async def chat_with_replit(message, history):
|
44 |
try:
|
45 |
messages = [{"role": "system", "content": "You are an assistant answering user questions."}]
|
@@ -59,7 +56,7 @@ async def chat_with_replit(message, history):
|
|
59 |
def chat_with_replit_sync(message, history):
|
60 |
return asyncio.run(chat_with_replit(message, history))
|
61 |
|
62 |
-
# ArXiv Chat
|
63 |
async def chat_with_replit_arxiv(message, history, doi_num):
|
64 |
try:
|
65 |
loader = ArxivLoader(query=str(doi_num), load_max_docs=10)
|
@@ -125,7 +122,6 @@ def process_pdf(pdf_file):
|
|
125 |
|
126 |
# Gradio UI
|
127 |
with gr.Blocks() as app:
|
128 |
-
# General Chat (unchanged)
|
129 |
with gr.Tab(label="General Chat"):
|
130 |
gr.Markdown("### Chat with the Assistant")
|
131 |
with gr.Row():
|
@@ -151,7 +147,6 @@ with gr.Blocks() as app:
|
|
151 |
general_send_button.click(update_general_response, inputs=general_chat_history,
|
152 |
outputs=[general_chat_history, general_chat_output])
|
153 |
|
154 |
-
# ArXiv Chat (unchanged)
|
155 |
with gr.Tab(label="Chat with ArXiv Paper"):
|
156 |
gr.Markdown("### Ask Questions About an ArXiv Paper")
|
157 |
with gr.Row():
|
@@ -178,7 +173,6 @@ with gr.Blocks() as app:
|
|
178 |
arxiv_send_button.click(update_arxiv_response, inputs=[arxiv_chat_history, arxiv_doi],
|
179 |
outputs=[arxiv_chat_history, arxiv_chat_output])
|
180 |
|
181 |
-
# Local PDF Chat
|
182 |
with gr.Tab(label="Chat with Local PDF"):
|
183 |
gr.Markdown("### Ask Questions About an Uploaded PDF")
|
184 |
pdf_file_input = gr.File(label="Upload PDF file", file_types=[".pdf"])
|
@@ -207,5 +201,4 @@ with gr.Blocks() as app:
|
|
207 |
pdf_send_button.click(update_pdf_response, inputs=pdf_chat_history,
|
208 |
outputs=[pdf_chat_history, pdf_chat_output])
|
209 |
|
210 |
-
app.launch()
|
211 |
-
|
|
|
3 |
import gradio as gr
|
4 |
import asyncio
|
5 |
from dotenv import load_dotenv
|
6 |
+
from langchain_community.document_loaders import ArxivLoader # Updated import
|
7 |
+
from langchain_community.vectorstores import Chroma # Updated import
|
8 |
+
from langchain_huggingface import HuggingFaceEmbeddings # Updated import
|
9 |
from langchain_groq import ChatGroq
|
10 |
from PyPDF2 import PdfReader
|
11 |
from huggingface_hub import login
|
|
|
24 |
logging.basicConfig(level=logging.INFO)
|
25 |
logger = logging.getLogger(__name__)
|
26 |
|
27 |
+
# Authenticate with Hugging Face (for model downloads)
|
28 |
login(HUGGING_API_KEY)
|
29 |
|
30 |
+
# Load models and embeddings with a local embedding model
|
31 |
+
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
|
|
|
32 |
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192", api_key=GROQ_API_KEY)
|
33 |
client = AsyncGroq(api_key=GROQ_API_KEY)
|
34 |
|
|
|
36 |
pdf_vector_store = None
|
37 |
current_pdf_path = None
|
38 |
|
39 |
+
# General Chat
|
40 |
async def chat_with_replit(message, history):
|
41 |
try:
|
42 |
messages = [{"role": "system", "content": "You are an assistant answering user questions."}]
|
|
|
56 |
def chat_with_replit_sync(message, history):
|
57 |
return asyncio.run(chat_with_replit(message, history))
|
58 |
|
59 |
+
# ArXiv Chat
|
60 |
async def chat_with_replit_arxiv(message, history, doi_num):
|
61 |
try:
|
62 |
loader = ArxivLoader(query=str(doi_num), load_max_docs=10)
|
|
|
122 |
|
123 |
# Gradio UI
|
124 |
with gr.Blocks() as app:
|
|
|
125 |
with gr.Tab(label="General Chat"):
|
126 |
gr.Markdown("### Chat with the Assistant")
|
127 |
with gr.Row():
|
|
|
147 |
general_send_button.click(update_general_response, inputs=general_chat_history,
|
148 |
outputs=[general_chat_history, general_chat_output])
|
149 |
|
|
|
150 |
with gr.Tab(label="Chat with ArXiv Paper"):
|
151 |
gr.Markdown("### Ask Questions About an ArXiv Paper")
|
152 |
with gr.Row():
|
|
|
173 |
arxiv_send_button.click(update_arxiv_response, inputs=[arxiv_chat_history, arxiv_doi],
|
174 |
outputs=[arxiv_chat_history, arxiv_chat_output])
|
175 |
|
|
|
176 |
with gr.Tab(label="Chat with Local PDF"):
|
177 |
gr.Markdown("### Ask Questions About an Uploaded PDF")
|
178 |
pdf_file_input = gr.File(label="Upload PDF file", file_types=[".pdf"])
|
|
|
201 |
pdf_send_button.click(update_pdf_response, inputs=pdf_chat_history,
|
202 |
outputs=[pdf_chat_history, pdf_chat_output])
|
203 |
|
204 |
+
app.launch()
|
|