Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,23 +4,21 @@ import gradio as gr
|
|
4 |
import asyncio
|
5 |
from dotenv import load_dotenv
|
6 |
from langchain.document_loaders import ArxivLoader
|
7 |
-
from langchain.text_splitter import TokenTextSplitter
|
8 |
from langchain.vectorstores import Chroma
|
9 |
from langchain_community.embeddings import HuggingFaceHubEmbeddings
|
10 |
from langchain_groq import ChatGroq
|
11 |
from PyPDF2 import PdfReader
|
12 |
from huggingface_hub import login
|
13 |
-
from groq import AsyncGroq
|
14 |
-
from langchain.docstore.document import Document
|
15 |
|
16 |
# Load environment variables
|
17 |
load_dotenv()
|
18 |
HUGGING_API_KEY = os.getenv("HUGGING_API_KEY")
|
19 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
20 |
|
21 |
-
# Ensure API keys are set
|
22 |
if not HUGGING_API_KEY or not GROQ_API_KEY:
|
23 |
-
raise ValueError("API keys for HuggingFace or Groq are missing.
|
24 |
|
25 |
# Configure Logging
|
26 |
logging.basicConfig(level=logging.INFO)
|
@@ -34,149 +32,106 @@ embedding_model = HuggingFaceHubEmbeddings(huggingfacehub_api_token=HUGGING_API_
|
|
34 |
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192", api_key=GROQ_API_KEY)
|
35 |
client = AsyncGroq(api_key=GROQ_API_KEY)
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
|
|
|
|
40 |
async def chat_with_replit(message, history):
|
41 |
-
"""General chat functionality using the Groq API."""
|
42 |
try:
|
43 |
messages = [{"role": "system", "content": "You are an assistant answering user questions."}]
|
44 |
-
|
45 |
for chat in history or []:
|
46 |
user_msg, assistant_msg = chat
|
47 |
messages.append({"role": "user", "content": user_msg})
|
48 |
messages.append({"role": "assistant", "content": assistant_msg})
|
49 |
-
|
50 |
messages.append({"role": "user", "content": message})
|
51 |
-
|
52 |
response = await client.chat.completions.create(
|
53 |
-
messages=messages,
|
54 |
-
model="llama3-70b-8192",
|
55 |
-
temperature=0,
|
56 |
-
max_tokens=1024,
|
57 |
-
top_p=1,
|
58 |
-
stream=False, # For simplicity we are not streaming
|
59 |
)
|
60 |
return response.choices[0].message.content
|
61 |
-
|
62 |
except Exception as e:
|
63 |
logger.error(f"Chat error: {e}")
|
64 |
return "Error in chat response."
|
65 |
|
66 |
def chat_with_replit_sync(message, history):
|
67 |
-
"""Synchronous wrapper for general chat."""
|
68 |
return asyncio.run(chat_with_replit(message, history))
|
69 |
|
70 |
-
#
|
71 |
-
# Chat Functionality for ArXiv Paper (Document Chat)
|
72 |
-
# -------------------------------------------------
|
73 |
async def chat_with_replit_arxiv(message, history, doi_num):
|
74 |
-
"""Chat answering questions using an ArXiv paper as context."""
|
75 |
try:
|
76 |
-
# Load the ArXiv document and split it into chunks
|
77 |
loader = ArxivLoader(query=str(doi_num), load_max_docs=10)
|
78 |
documents = loader.load_and_split()
|
79 |
if not documents:
|
80 |
return "No documents found for the provided arXiv number."
|
81 |
metadata = documents[0].metadata
|
82 |
-
|
83 |
-
# Create vector store for the loaded documents
|
84 |
vector_store = Chroma.from_documents(documents, embedding_model)
|
85 |
-
|
86 |
-
|
87 |
-
results = vector_store.similarity_search(user_query, k=3)
|
88 |
-
return "\n\n".join(doc.page_content for doc in results)
|
89 |
-
|
90 |
-
relevant_content = retrieve_relevant_content(message)
|
91 |
-
|
92 |
messages = [
|
93 |
{"role": "user", "content": message},
|
94 |
-
{"role": "system", "content": f"Answer based on this arXiv paper {doi_num}.\
|
95 |
-
f"Metadata: {metadata}.\n"
|
96 |
-
f"Relevant Content: {relevant_content}"}
|
97 |
]
|
98 |
-
|
99 |
response = await client.chat.completions.create(
|
100 |
-
messages=messages,
|
101 |
-
model="llama3-70b-8192",
|
102 |
-
temperature=0,
|
103 |
-
max_tokens=1024,
|
104 |
-
top_p=1,
|
105 |
-
stream=False,
|
106 |
)
|
107 |
return response.choices[0].message.content
|
108 |
-
|
109 |
except Exception as e:
|
110 |
-
logger.error(f"Error in chat with
|
111 |
return "Error processing chat with arXiv paper."
|
112 |
|
113 |
def chat_with_replit_arxiv_sync(message, history, doi_num):
|
114 |
-
"""Synchronous wrapper for arXiv chat."""
|
115 |
return asyncio.run(chat_with_replit_arxiv(message, history, doi_num))
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
# -------------------------------------------------
|
120 |
-
async def chat_with_replit_local_pdf(message, history, pdf_file_path):
|
121 |
-
"""Chat answering questions using a local PDF as context."""
|
122 |
try:
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
return "Could not extract text from PDF."
|
128 |
-
|
129 |
-
# Create a document from the PDF text
|
130 |
-
documents = [Document(page_content=text, metadata={"source": pdf_file_path})]
|
131 |
-
|
132 |
-
# Create a vector store using the document
|
133 |
-
vector_store = Chroma.from_documents(documents, embedding_model)
|
134 |
-
|
135 |
-
def retrieve_relevant_content(user_query):
|
136 |
-
results = vector_store.similarity_search(user_query, k=3)
|
137 |
-
return "\n\n".join(doc.page_content for doc in results)
|
138 |
-
|
139 |
-
relevant_content = retrieve_relevant_content(message)
|
140 |
-
|
141 |
messages = [
|
142 |
{"role": "user", "content": message},
|
143 |
-
{"role": "system", "content": f"Answer based on
|
144 |
-
f"Relevant Content: {relevant_content}"}
|
145 |
]
|
146 |
-
|
147 |
response = await client.chat.completions.create(
|
148 |
-
messages=messages,
|
149 |
-
model="llama3-70b-8192",
|
150 |
-
temperature=0,
|
151 |
-
max_tokens=1024,
|
152 |
-
top_p=1,
|
153 |
-
stream=False,
|
154 |
)
|
155 |
return response.choices[0].message.content
|
156 |
-
|
157 |
except Exception as e:
|
158 |
logger.error(f"Error in chat with local PDF: {e}")
|
159 |
return "Error processing chat with local PDF."
|
160 |
|
161 |
-
def
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
-
#
|
166 |
-
# Gradio UI Integration
|
167 |
-
# ------------------------------------
|
168 |
with gr.Blocks() as app:
|
169 |
-
#
|
170 |
with gr.Tab(label="General Chat"):
|
171 |
gr.Markdown("### Chat with the Assistant")
|
172 |
with gr.Row():
|
173 |
general_chat_input = gr.Textbox(placeholder="Type your message here...", label="Your Message")
|
174 |
general_send_button = gr.Button("Send")
|
175 |
-
general_chat_output = gr.Markdown(label="Chat Output"
|
176 |
general_chat_history = gr.State([])
|
177 |
|
178 |
def update_general_chat(user_message, history):
|
179 |
-
# Append the new message with an empty assistant reply for now.
|
180 |
history = history or []
|
181 |
history.append([user_message, ""])
|
182 |
return history, history
|
@@ -189,18 +144,18 @@ with gr.Blocks() as app:
|
|
189 |
return history, formatted
|
190 |
|
191 |
general_send_button.click(update_general_chat, inputs=[general_chat_input, general_chat_history],
|
192 |
-
|
193 |
general_send_button.click(update_general_response, inputs=general_chat_history,
|
194 |
-
|
195 |
|
196 |
-
#
|
197 |
with gr.Tab(label="Chat with ArXiv Paper"):
|
198 |
gr.Markdown("### Ask Questions About an ArXiv Paper")
|
199 |
with gr.Row():
|
200 |
arxiv_input = gr.Textbox(placeholder="Enter your question here...", label="Your Question")
|
201 |
arxiv_doi = gr.Textbox(placeholder="Enter arXiv number, e.g. 2502.02523", label="ArXiv Number")
|
202 |
arxiv_send_button = gr.Button("Send")
|
203 |
-
arxiv_chat_output = gr.Markdown(label="Chat Output"
|
204 |
arxiv_chat_history = gr.State([])
|
205 |
|
206 |
def update_arxiv_chat(user_message, history):
|
@@ -216,18 +171,19 @@ with gr.Blocks() as app:
|
|
216 |
return history, formatted
|
217 |
|
218 |
arxiv_send_button.click(update_arxiv_chat, inputs=[arxiv_input, arxiv_chat_history],
|
219 |
-
|
220 |
arxiv_send_button.click(update_arxiv_response, inputs=[arxiv_chat_history, arxiv_doi],
|
221 |
-
|
222 |
|
223 |
-
#
|
224 |
with gr.Tab(label="Chat with Local PDF"):
|
225 |
gr.Markdown("### Ask Questions About an Uploaded PDF")
|
|
|
|
|
226 |
with gr.Row():
|
227 |
-
pdf_file_input = gr.File(label="Upload PDF file")
|
228 |
pdf_chat_input = gr.Textbox(placeholder="Enter your question here...", label="Your Question")
|
229 |
pdf_send_button = gr.Button("Send")
|
230 |
-
pdf_chat_output = gr.Markdown(label="Chat Output"
|
231 |
pdf_chat_history = gr.State([])
|
232 |
|
233 |
def update_pdf_chat(user_message, history):
|
@@ -235,17 +191,18 @@ with gr.Blocks() as app:
|
|
235 |
history.append([user_message, ""])
|
236 |
return history, history
|
237 |
|
238 |
-
def update_pdf_response(history
|
239 |
user_message = history[-1][0]
|
240 |
-
response =
|
241 |
history[-1][1] = response
|
242 |
formatted = "\n\n".join([f"**User:** {u}\n\n**Assistant:** {a}" for u, a in history])
|
243 |
return history, formatted
|
244 |
|
|
|
245 |
pdf_send_button.click(update_pdf_chat, inputs=[pdf_chat_input, pdf_chat_history],
|
246 |
-
|
247 |
-
pdf_send_button.click(update_pdf_response, inputs=
|
248 |
-
|
249 |
|
250 |
app.launch()
|
251 |
|
|
|
4 |
import asyncio
|
5 |
from dotenv import load_dotenv
|
6 |
from langchain.document_loaders import ArxivLoader
|
|
|
7 |
from langchain.vectorstores import Chroma
|
8 |
from langchain_community.embeddings import HuggingFaceHubEmbeddings
|
9 |
from langchain_groq import ChatGroq
|
10 |
from PyPDF2 import PdfReader
|
11 |
from huggingface_hub import login
|
12 |
+
from groq import AsyncGroq
|
13 |
+
from langchain.docstore.document import Document
|
14 |
|
15 |
# Load environment variables
|
16 |
load_dotenv()
|
17 |
HUGGING_API_KEY = os.getenv("HUGGING_API_KEY")
|
18 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
19 |
|
|
|
20 |
if not HUGGING_API_KEY or not GROQ_API_KEY:
|
21 |
+
raise ValueError("API keys for HuggingFace or Groq are missing.")
|
22 |
|
23 |
# Configure Logging
|
24 |
logging.basicConfig(level=logging.INFO)
|
|
|
32 |
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192", api_key=GROQ_API_KEY)
|
33 |
client = AsyncGroq(api_key=GROQ_API_KEY)
|
34 |
|
35 |
+
# Global state for PDF vector store
|
36 |
+
pdf_vector_store = None
|
37 |
+
current_pdf_path = None
|
38 |
+
|
39 |
+
# General Chat (unchanged)
|
40 |
async def chat_with_replit(message, history):
|
|
|
41 |
try:
|
42 |
messages = [{"role": "system", "content": "You are an assistant answering user questions."}]
|
|
|
43 |
for chat in history or []:
|
44 |
user_msg, assistant_msg = chat
|
45 |
messages.append({"role": "user", "content": user_msg})
|
46 |
messages.append({"role": "assistant", "content": assistant_msg})
|
|
|
47 |
messages.append({"role": "user", "content": message})
|
|
|
48 |
response = await client.chat.completions.create(
|
49 |
+
messages=messages, model="llama3-70b-8192", temperature=0, max_tokens=1024, top_p=1, stream=False
|
|
|
|
|
|
|
|
|
|
|
50 |
)
|
51 |
return response.choices[0].message.content
|
|
|
52 |
except Exception as e:
|
53 |
logger.error(f"Chat error: {e}")
|
54 |
return "Error in chat response."
|
55 |
|
56 |
def chat_with_replit_sync(message, history):
|
|
|
57 |
return asyncio.run(chat_with_replit(message, history))
|
58 |
|
59 |
+
# ArXiv Chat (unchanged)
|
|
|
|
|
60 |
async def chat_with_replit_arxiv(message, history, doi_num):
|
|
|
61 |
try:
|
|
|
62 |
loader = ArxivLoader(query=str(doi_num), load_max_docs=10)
|
63 |
documents = loader.load_and_split()
|
64 |
if not documents:
|
65 |
return "No documents found for the provided arXiv number."
|
66 |
metadata = documents[0].metadata
|
|
|
|
|
67 |
vector_store = Chroma.from_documents(documents, embedding_model)
|
68 |
+
results = vector_store.similarity_search(message, k=3)
|
69 |
+
relevant_content = "\n\n".join(doc.page_content for doc in results)
|
|
|
|
|
|
|
|
|
|
|
70 |
messages = [
|
71 |
{"role": "user", "content": message},
|
72 |
+
{"role": "system", "content": f"Answer based on this arXiv paper {doi_num}.\nMetadata: {metadata}.\nRelevant Content: {relevant_content}"}
|
|
|
|
|
73 |
]
|
|
|
74 |
response = await client.chat.completions.create(
|
75 |
+
messages=messages, model="llama3-70b-8192", temperature=0, max_tokens=1024, top_p=1, stream=False
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
return response.choices[0].message.content
|
|
|
78 |
except Exception as e:
|
79 |
+
logger.error(f"Error in chat with ArXiv PDF: {e}")
|
80 |
return "Error processing chat with arXiv paper."
|
81 |
|
82 |
def chat_with_replit_arxiv_sync(message, history, doi_num):
|
|
|
83 |
return asyncio.run(chat_with_replit_arxiv(message, history, doi_num))
|
84 |
|
85 |
+
# Local PDF Chat
|
86 |
+
async def chat_with_replit_local_pdf(message, vector_store):
|
|
|
|
|
|
|
87 |
try:
|
88 |
+
if not vector_store:
|
89 |
+
return "Please upload a PDF first and wait for processing to complete."
|
90 |
+
results = vector_store.similarity_search(message, k=3)
|
91 |
+
relevant_content = "\n\n".join(doc.page_content for doc in results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
messages = [
|
93 |
{"role": "user", "content": message},
|
94 |
+
{"role": "system", "content": f"Answer based on the uploaded PDF.\nRelevant Content: {relevant_content}"}
|
|
|
95 |
]
|
|
|
96 |
response = await client.chat.completions.create(
|
97 |
+
messages=messages, model="llama3-70b-8192", temperature=0, max_tokens=1024, top_p=1, stream=False
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
return response.choices[0].message.content
|
|
|
100 |
except Exception as e:
|
101 |
logger.error(f"Error in chat with local PDF: {e}")
|
102 |
return "Error processing chat with local PDF."
|
103 |
|
104 |
+
def process_pdf(pdf_file):
|
105 |
+
global pdf_vector_store, current_pdf_path
|
106 |
+
try:
|
107 |
+
if pdf_file != current_pdf_path:
|
108 |
+
logger.info("Extracting text from PDF...")
|
109 |
+
reader = PdfReader(pdf_file)
|
110 |
+
text = "\n".join(page.extract_text() or "" for page in reader.pages)
|
111 |
+
if not text.strip():
|
112 |
+
return "Could not extract text from PDF."
|
113 |
+
documents = [Document(page_content=text, metadata={"source": pdf_file})]
|
114 |
+
logger.info("Creating vector store...")
|
115 |
+
pdf_vector_store = Chroma.from_documents(documents, embedding_model)
|
116 |
+
current_pdf_path = pdf_file
|
117 |
+
return "PDF processed successfully. You can now ask questions."
|
118 |
+
return "PDF already processed. Ask away!"
|
119 |
+
except Exception as e:
|
120 |
+
logger.error(f"Error processing PDF: {e}")
|
121 |
+
return f"Error processing PDF: {str(e)}"
|
122 |
|
123 |
+
# Gradio UI
|
|
|
|
|
124 |
with gr.Blocks() as app:
|
125 |
+
# General Chat (unchanged)
|
126 |
with gr.Tab(label="General Chat"):
|
127 |
gr.Markdown("### Chat with the Assistant")
|
128 |
with gr.Row():
|
129 |
general_chat_input = gr.Textbox(placeholder="Type your message here...", label="Your Message")
|
130 |
general_send_button = gr.Button("Send")
|
131 |
+
general_chat_output = gr.Markdown(label="Chat Output")
|
132 |
general_chat_history = gr.State([])
|
133 |
|
134 |
def update_general_chat(user_message, history):
|
|
|
135 |
history = history or []
|
136 |
history.append([user_message, ""])
|
137 |
return history, history
|
|
|
144 |
return history, formatted
|
145 |
|
146 |
general_send_button.click(update_general_chat, inputs=[general_chat_input, general_chat_history],
|
147 |
+
outputs=[general_chat_history, general_chat_output])
|
148 |
general_send_button.click(update_general_response, inputs=general_chat_history,
|
149 |
+
outputs=[general_chat_history, general_chat_output])
|
150 |
|
151 |
+
# ArXiv Chat (unchanged)
|
152 |
with gr.Tab(label="Chat with ArXiv Paper"):
|
153 |
gr.Markdown("### Ask Questions About an ArXiv Paper")
|
154 |
with gr.Row():
|
155 |
arxiv_input = gr.Textbox(placeholder="Enter your question here...", label="Your Question")
|
156 |
arxiv_doi = gr.Textbox(placeholder="Enter arXiv number, e.g. 2502.02523", label="ArXiv Number")
|
157 |
arxiv_send_button = gr.Button("Send")
|
158 |
+
arxiv_chat_output = gr.Markdown(label="Chat Output")
|
159 |
arxiv_chat_history = gr.State([])
|
160 |
|
161 |
def update_arxiv_chat(user_message, history):
|
|
|
171 |
return history, formatted
|
172 |
|
173 |
arxiv_send_button.click(update_arxiv_chat, inputs=[arxiv_input, arxiv_chat_history],
|
174 |
+
outputs=[arxiv_chat_history, arxiv_chat_output])
|
175 |
arxiv_send_button.click(update_arxiv_response, inputs=[arxiv_chat_history, arxiv_doi],
|
176 |
+
outputs=[arxiv_chat_history, arxiv_chat_output])
|
177 |
|
178 |
+
# Local PDF Chat
|
179 |
with gr.Tab(label="Chat with Local PDF"):
|
180 |
gr.Markdown("### Ask Questions About an Uploaded PDF")
|
181 |
+
pdf_file_input = gr.File(label="Upload PDF file", file_types=[".pdf"])
|
182 |
+
pdf_status = gr.Textbox(label="PDF Processing Status", interactive=False)
|
183 |
with gr.Row():
|
|
|
184 |
pdf_chat_input = gr.Textbox(placeholder="Enter your question here...", label="Your Question")
|
185 |
pdf_send_button = gr.Button("Send")
|
186 |
+
pdf_chat_output = gr.Markdown(label="Chat Output")
|
187 |
pdf_chat_history = gr.State([])
|
188 |
|
189 |
def update_pdf_chat(user_message, history):
|
|
|
191 |
history.append([user_message, ""])
|
192 |
return history, history
|
193 |
|
194 |
+
def update_pdf_response(history):
|
195 |
user_message = history[-1][0]
|
196 |
+
response = asyncio.run(chat_with_replit_local_pdf(user_message, pdf_vector_store))
|
197 |
history[-1][1] = response
|
198 |
formatted = "\n\n".join([f"**User:** {u}\n\n**Assistant:** {a}" for u, a in history])
|
199 |
return history, formatted
|
200 |
|
201 |
+
pdf_file_input.change(process_pdf, inputs=pdf_file_input, outputs=pdf_status)
|
202 |
pdf_send_button.click(update_pdf_chat, inputs=[pdf_chat_input, pdf_chat_history],
|
203 |
+
outputs=[pdf_chat_history, pdf_chat_output])
|
204 |
+
pdf_send_button.click(update_pdf_response, inputs=pdf_chat_history,
|
205 |
+
outputs=[pdf_chat_history, pdf_chat_output])
|
206 |
|
207 |
app.launch()
|
208 |
|