Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import numpy as np
|
5 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
6 |
+
|
7 |
+
# Model loading function with caching
|
8 |
+
def load_model():
|
9 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
11 |
+
|
12 |
+
model = WhisperForConditionalGeneration.from_pretrained("tclin/whisper-large-v3-turbo-atcosim-finetune")
|
13 |
+
model = model.to(device=device, dtype=torch_dtype)
|
14 |
+
processor = WhisperProcessor.from_pretrained("tclin/whisper-large-v3-turbo-atcosim-finetune")
|
15 |
+
|
16 |
+
return model, processor, device, torch_dtype
|
17 |
+
|
18 |
+
# Load model and processor once at startup
|
19 |
+
model, processor, device, torch_dtype = load_model()
|
20 |
+
|
21 |
+
# Define the transcription function
|
22 |
+
def transcribe_audio(audio_file):
|
23 |
+
# Check if audio file exists
|
24 |
+
if audio_file is None:
|
25 |
+
return "Please upload an audio file"
|
26 |
+
|
27 |
+
try:
|
28 |
+
# Load and preprocess audio
|
29 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
30 |
+
|
31 |
+
# Resample to 16kHz (required for Whisper models)
|
32 |
+
if sample_rate != 16000:
|
33 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
34 |
+
waveform = resampler(waveform)
|
35 |
+
|
36 |
+
# Convert stereo to mono if needed
|
37 |
+
if waveform.shape[0] > 1:
|
38 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
39 |
+
|
40 |
+
# Convert to numpy array
|
41 |
+
waveform_np = waveform.squeeze().cpu().numpy()
|
42 |
+
|
43 |
+
# Process with model
|
44 |
+
input_features = processor(waveform_np, sampling_rate=16000, return_tensors="pt").input_features
|
45 |
+
input_features = input_features.to(device=device, dtype=torch_dtype)
|
46 |
+
|
47 |
+
generated_ids = model.generate(input_features, max_new_tokens=128)
|
48 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
49 |
+
|
50 |
+
return transcription
|
51 |
+
|
52 |
+
except Exception as e:
|
53 |
+
return f"Error processing audio: {str(e)}"
|
54 |
+
|
55 |
+
# Create Gradio interface
|
56 |
+
demo = gr.Interface(
|
57 |
+
fn=transcribe_audio,
|
58 |
+
inputs=gr.Audio(type="filepath"),
|
59 |
+
outputs="text",
|
60 |
+
title="ATC Speech Transcription",
|
61 |
+
description="Upload an air traffic control audio file and get an accurate transcription using a Whisper model fine-tuned on the ATCOSIM dataset.",
|
62 |
+
examples=[
|
63 |
+
["example1.wav"],
|
64 |
+
["example2.wav"]
|
65 |
+
],
|
66 |
+
article="This model is fine-tuned on the ATCOSIM dataset to accurately transcribe air traffic control communications with a Word Error Rate (WER) of 3.73%."
|
67 |
+
)
|
68 |
+
|
69 |
+
# Launch the interface
|
70 |
+
if __name__ == "__main__":
|
71 |
+
demo.launch()
|