File size: 1,361 Bytes
dde1432 292255d dde1432 292255d 2a4714f dde1432 292255d 2a4714f dde1432 292255d 2a4714f dde1432 292255d dde1432 292255d 2a4714f 292255d 2a4714f 292255d dde1432 2a4714f 292255d dde1432 292255d dde1432 2a4714f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoImageProcessor
import torch
from PIL import Image
import os
from huggingface_hub import login
# ✅ 登入 Token(注意,不要寫死 token,請用 Secrets)
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
# ✅ 模型與處理器
MODEL_ID = "Qwen/Qwen-VL-Chat"
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
image_processor = AutoImageProcessor.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, trust_remote_code=True, token=HF_TOKEN).eval()
# ✅ 推理函數
def ask(image, prompt):
image_tensor = image_processor(image, return_tensors="pt")["pixel_values"].to(model.device)
text_input = tokenizer(prompt, return_tensors="pt").to(model.device)
inputs = {
"input_ids": text_input["input_ids"],
"pixel_values": image_tensor
}
output = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
# ✅ Gradio UI
demo = gr.Interface(
fn=ask,
inputs=[gr.Image(type="pil"), gr.Textbox(label="請輸入問題")],
outputs="text",
title="🧠 Qwen-VL 圖文問答 Demo"
)
if __name__ == "__main__":
demo.launch() |