File size: 9,534 Bytes
cd3f05b
 
1192c0b
 
 
 
 
 
 
 
a4780f4
 
 
1192c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925ae35
1192c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925ae35
1192c0b
925ae35
1192c0b
 
 
cd3f05b
1192c0b
925ae35
1192c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925ae35
1192c0b
 
 
925ae35
1192c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3f05b
1192c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
925ae35
1192c0b
925ae35
1192c0b
925ae35
1192c0b
925ae35
cd3f05b
1192c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3f05b
1192c0b
 
 
 
 
 
cd3f05b
1192c0b
 
 
 
 
 
925ae35
cd3f05b
1192c0b
e332bb4
 
 
 
 
 
cd3f05b
1192c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3f05b
1192c0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd3f05b
1192c0b
cd3f05b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import gradio as gr
import torch
from transformers import pipeline, set_seed
from diffusers import AutoPipelineForText2Image
import openai
import os
import time
import traceback
from typing import Optional, Tuple, Union, Literal, TypedDict
from PIL import Image
# 在代码开头添加:
import os
os.environ["OPENAI_API_KEY"] = "sk-your-api-key-here"

# ---- 类型定义 ----
class ModelConfig(TypedDict):
    model_id: str
    dtype: torch.dtype
    timeout: int

class UIConfig(TypedDict):
    title: str
    description: str
    warning_css: str

# ---- 配置管理 ----
class AppConfig:
    # 硬件配置
    DEVICE: str = "cuda" if torch.cuda.is_available() else "cpu"
    
    # 模型配置
    MODEL: ModelConfig = {
        "model_id": "nota-ai/bk-sdm-tiny",
        "dtype": torch.float32,
        "timeout": 300
    }
    
    # 界面配置
    UI: UIConfig = {
        "title": "🎨 轻量级AI图像生成器(CPU/GPU版)",
        "description": """\
        💡 使用技巧:输入简短描述后选择风格和质量选项\n
        🚀 支持语音输入 • 自动提示词优化 • 快速生成模式\n
        ⚠️ 注意:小模型生成速度快但细节有限,建议使用具体描述""",
        "warning_css": """
        .warning {color: orange !important; border-left: 3px solid orange; padding: 10px;}
        .success {color: green !important;}
        """
    }
    
    # 生成参数
    DEFAULT_STEPS: int = 20
    MAX_STEPS: int = 40
    DEFAULT_GUIDANCE: float = 5.0
    
    # 错误模板
    @staticmethod
    def error_msg(message: str) -> str:
        return f"❌ 错误:{message}"

config = AppConfig()

# ---- 初始化检查 ----
openai_client: Optional[openai.OpenAI] = None
openai_available: bool = False

if os.environ.get("OPENAI_API_KEY"):
    try:
        openai_client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"])
        openai_available = True
        print("✅ OpenAI 客户端初始化成功")
    except Exception as e:
        print(config.error_msg(f"OpenAI 初始化失败: {e}"))

# ---- 模型加载 ----
class DummyPipe:
    def __call__(self, *args, **kwargs) -> None:
        raise RuntimeError("图像生成模型未加载")

# 语音识别模型
asr_pipeline = None
try:
    asr_pipeline = pipeline(
        "automatic-speech-recognition",
        model="openai/whisper-base",
        device=config.DEVICE,
        torch_dtype=config.MODEL["dtype"]
    )
    print("✅ 语音识别模型加载成功")
except Exception as e:
    print(config.error_msg(f"语音模型加载失败: {e}"))

# 图像生成模型
image_pipe: Union[AutoPipelineForText2Image, DummyPipe] = DummyPipe()
try:
    image_pipe = AutoPipelineForText2Image.from_pretrained(
        config.MODEL["model_id"],
        torch_dtype=config.MODEL["dtype"],
        use_safetensors=True,
        resume_download=True,
        timeout=config.MODEL["timeout"]
    ).to(config.DEVICE)
    print(f"✅ 图像模型 {config.MODEL['model_id']} 加载成功")
except Exception as e:
    print(config.error_msg(f"图像模型加载失败: {e}"))

# ---- 核心功能 ----
def enhance_prompt(short_prompt: str, style: str, quality: list) -> str:
    """提示词优化处理"""
    if not short_prompt.strip():
        raise gr.Error("描述内容不能为空")

    # 基础增强模板
    base_prompt = f"{short_prompt.strip()}, {style}, {', '.join(quality)}"
    
    if not openai_available:
        return base_prompt

    try:
        response = openai_client.chat.completions.create(
            model="gpt-3.5-turbo",
            messages=[{
                "role": "system",
                "content": "你是一个AI绘画提示词专家,请把用户的简短描述扩展为适合小模型使用的详细提示词。"
            }, {
                "role": "user",
                "content": f"请优化这个提示词:'{base_prompt}'。要求:保持简洁,适合快速生成,包含主要视觉元素。"
            }],
            temperature=0.7,
            max_tokens=100
        )
        return response.choices[0].message.content.strip('"')
    except Exception as e:
        print(config.error_msg(f"提示词优化失败: {e}"))
        return base_prompt

def generate_image(prompt: str, neg_prompt: str, cfg: float, steps: int) -> Image.Image:
    """图像生成核心函数"""
    if isinstance(image_pipe, DummyPipe):
        raise gr.Error("图像生成功能不可用:模型加载失败")
    
    try:
        with torch.no_grad():
            result = image_pipe(
                prompt=prompt,
                negative_prompt=neg_prompt,
                guidance_scale=cfg,
                num_inference_steps=steps,
                generator=torch.Generator(config.DEVICE).manual_seed(int(time.time()))
            )
        return result.images[0]
    except Exception as e:
        raise gr.Error(f"生成失败: {str(e)}")

def transcribe_audio(audio_path: str) -> str:
    """语音转文字处理"""
    if not asr_pipeline or not audio_path:
        return ""
    
    try:
        return asr_pipeline(audio_path)["text"].strip()
    except Exception as e:
        print(config.error_msg(f"语音识别失败: {e}"))
        return ""

# ---- 界面逻辑 ----
STYLE_OPTIONS = {
    "🎥 电影风格": "cinematic lighting",
    "🖼️ 照片写实": "photorealistic",
    "🇯🇵 二次元": "anime style",
    "🎨 水彩艺术": "watercolor painting"
}

QUALITY_OPTIONS = [
    "高清细节", "复杂构图", 
    "专业光影", "4K分辨率"
]

def process_inputs(
    text: str,
    audio: Optional[str],
    style: str,
    quality: list,
    neg_prompt: str,
    cfg: float,
    steps: int
) -> Tuple[str, Optional[Image.Image]]:
    """主处理流程"""
    try:
        # 输入处理
        final_text = text.strip()
        if audio and os.path.exists(audio):
            final_text = transcribe_audio(audio) or final_text
        
        # 提示词优化
        enhanced = enhance_prompt(final_text, STYLE_OPTIONS[style], quality)
        
        # 图像生成
        start_time = time.time()
        image = generate_image(enhanced, neg_prompt, cfg, steps)
        time_cost = time.time() - start_time
        
        return f"✅ 生成成功(耗时:{time_cost:.1f}s)\n{enhanced}", image
    except Exception as e:
        return f"❌ 生成失败:{str(e)}", None

# ---- Gradio界面 ----
with gr.Blocks(theme=gr.themes.Soft(), css=config.UI["warning_css"]) as app:
    # 标题区
    gr.Markdown(f"## {config.UI['title']}")
    gr.Markdown(config.UI["description"])
    
    # 状态提示
    if not openai_available:
        gr.HTML("<div class='warning'>⚠️ OpenAI服务未启用,使用基础提示优化</div>")
    if isinstance(image_pipe, DummyPipe):
        gr.HTML("<div class='warning'>⚠️ 图像生成功能不可用:模型加载失败</div>")

    with gr.Row():
        # 输入列
        with gr.Column(scale=1):
            input_text = gr.Textbox(
                label="📝 输入描述",
                placeholder="例:机械猫在火星咖啡馆喝咖啡",
                max_lines=3
            )
            
            audio_input = gr.Audio(
            sources=["microphone"],
            type="filepath",
            label="🎤 语音输入",
            visible=bool(asr_pipeline)
            )

            
            with gr.Accordion("⚙️ 高级参数", open=False):
                style_select = gr.Dropdown(
                    label="艺术风格",
                    choices=list(STYLE_OPTIONS.keys()),
                    value="🎥 电影风格"
                )
                quality_check = gr.CheckboxGroup(
                    label="质量增强",
                    choices=QUALITY_OPTIONS,
                    value=["高清细节"]
                )
                neg_prompt = gr.Textbox(
                    label="🚫 排除内容",
                    placeholder="输入不希望出现的元素..."
                )
                cfg_slider = gr.Slider(
                    1.0, 10.0, 
                    value=config.DEFAULT_GUIDANCE,
                    label="生成引导强度"
                )
                steps_slider = gr.Slider(
                    5, config.MAX_STEPS,
                    value=config.DEFAULT_STEPS,
                    label="迭代步数"
                )
            
            generate_btn = gr.Button(
                "✨ 开始生成", 
                variant="primary",
                interactive=not isinstance(image_pipe, DummyPipe)
            )
        
        # 输出列
        with gr.Column(scale=1):
            prompt_output = gr.Textbox(
                label="📋 生成提示",
                interactive=False,
                lines=4
            )
            image_output = gr.Image(
                label="🖼️ 生成结果",
                type="pil",
                height=512,
                show_download_button=True
            )

    # 事件绑定
    inputs = [input_text, audio_input, style_select, quality_check, neg_prompt, cfg_slider, steps_slider]
    generate_btn.click(process_inputs, inputs, [prompt_output, image_output])

    # 音频输入自动清空文本
    if asr_pipeline:
        audio_input.change(
            lambda x: "" if x else gr.update(),
            audio_input, input_text
        )

# ---- 启动应用 ----
if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860)