Spaces:
Sleeping
Sleeping
File size: 9,534 Bytes
cd3f05b 1192c0b a4780f4 1192c0b 925ae35 1192c0b 925ae35 1192c0b 925ae35 1192c0b cd3f05b 1192c0b 925ae35 1192c0b 925ae35 1192c0b 925ae35 1192c0b cd3f05b 1192c0b 925ae35 1192c0b 925ae35 1192c0b 925ae35 1192c0b 925ae35 cd3f05b 1192c0b cd3f05b 1192c0b cd3f05b 1192c0b 925ae35 cd3f05b 1192c0b e332bb4 cd3f05b 1192c0b cd3f05b 1192c0b cd3f05b 1192c0b cd3f05b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import gradio as gr
import torch
from transformers import pipeline, set_seed
from diffusers import AutoPipelineForText2Image
import openai
import os
import time
import traceback
from typing import Optional, Tuple, Union, Literal, TypedDict
from PIL import Image
# 在代码开头添加:
import os
os.environ["OPENAI_API_KEY"] = "sk-your-api-key-here"
# ---- 类型定义 ----
class ModelConfig(TypedDict):
model_id: str
dtype: torch.dtype
timeout: int
class UIConfig(TypedDict):
title: str
description: str
warning_css: str
# ---- 配置管理 ----
class AppConfig:
# 硬件配置
DEVICE: str = "cuda" if torch.cuda.is_available() else "cpu"
# 模型配置
MODEL: ModelConfig = {
"model_id": "nota-ai/bk-sdm-tiny",
"dtype": torch.float32,
"timeout": 300
}
# 界面配置
UI: UIConfig = {
"title": "🎨 轻量级AI图像生成器(CPU/GPU版)",
"description": """\
💡 使用技巧:输入简短描述后选择风格和质量选项\n
🚀 支持语音输入 • 自动提示词优化 • 快速生成模式\n
⚠️ 注意:小模型生成速度快但细节有限,建议使用具体描述""",
"warning_css": """
.warning {color: orange !important; border-left: 3px solid orange; padding: 10px;}
.success {color: green !important;}
"""
}
# 生成参数
DEFAULT_STEPS: int = 20
MAX_STEPS: int = 40
DEFAULT_GUIDANCE: float = 5.0
# 错误模板
@staticmethod
def error_msg(message: str) -> str:
return f"❌ 错误:{message}"
config = AppConfig()
# ---- 初始化检查 ----
openai_client: Optional[openai.OpenAI] = None
openai_available: bool = False
if os.environ.get("OPENAI_API_KEY"):
try:
openai_client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"])
openai_available = True
print("✅ OpenAI 客户端初始化成功")
except Exception as e:
print(config.error_msg(f"OpenAI 初始化失败: {e}"))
# ---- 模型加载 ----
class DummyPipe:
def __call__(self, *args, **kwargs) -> None:
raise RuntimeError("图像生成模型未加载")
# 语音识别模型
asr_pipeline = None
try:
asr_pipeline = pipeline(
"automatic-speech-recognition",
model="openai/whisper-base",
device=config.DEVICE,
torch_dtype=config.MODEL["dtype"]
)
print("✅ 语音识别模型加载成功")
except Exception as e:
print(config.error_msg(f"语音模型加载失败: {e}"))
# 图像生成模型
image_pipe: Union[AutoPipelineForText2Image, DummyPipe] = DummyPipe()
try:
image_pipe = AutoPipelineForText2Image.from_pretrained(
config.MODEL["model_id"],
torch_dtype=config.MODEL["dtype"],
use_safetensors=True,
resume_download=True,
timeout=config.MODEL["timeout"]
).to(config.DEVICE)
print(f"✅ 图像模型 {config.MODEL['model_id']} 加载成功")
except Exception as e:
print(config.error_msg(f"图像模型加载失败: {e}"))
# ---- 核心功能 ----
def enhance_prompt(short_prompt: str, style: str, quality: list) -> str:
"""提示词优化处理"""
if not short_prompt.strip():
raise gr.Error("描述内容不能为空")
# 基础增强模板
base_prompt = f"{short_prompt.strip()}, {style}, {', '.join(quality)}"
if not openai_available:
return base_prompt
try:
response = openai_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{
"role": "system",
"content": "你是一个AI绘画提示词专家,请把用户的简短描述扩展为适合小模型使用的详细提示词。"
}, {
"role": "user",
"content": f"请优化这个提示词:'{base_prompt}'。要求:保持简洁,适合快速生成,包含主要视觉元素。"
}],
temperature=0.7,
max_tokens=100
)
return response.choices[0].message.content.strip('"')
except Exception as e:
print(config.error_msg(f"提示词优化失败: {e}"))
return base_prompt
def generate_image(prompt: str, neg_prompt: str, cfg: float, steps: int) -> Image.Image:
"""图像生成核心函数"""
if isinstance(image_pipe, DummyPipe):
raise gr.Error("图像生成功能不可用:模型加载失败")
try:
with torch.no_grad():
result = image_pipe(
prompt=prompt,
negative_prompt=neg_prompt,
guidance_scale=cfg,
num_inference_steps=steps,
generator=torch.Generator(config.DEVICE).manual_seed(int(time.time()))
)
return result.images[0]
except Exception as e:
raise gr.Error(f"生成失败: {str(e)}")
def transcribe_audio(audio_path: str) -> str:
"""语音转文字处理"""
if not asr_pipeline or not audio_path:
return ""
try:
return asr_pipeline(audio_path)["text"].strip()
except Exception as e:
print(config.error_msg(f"语音识别失败: {e}"))
return ""
# ---- 界面逻辑 ----
STYLE_OPTIONS = {
"🎥 电影风格": "cinematic lighting",
"🖼️ 照片写实": "photorealistic",
"🇯🇵 二次元": "anime style",
"🎨 水彩艺术": "watercolor painting"
}
QUALITY_OPTIONS = [
"高清细节", "复杂构图",
"专业光影", "4K分辨率"
]
def process_inputs(
text: str,
audio: Optional[str],
style: str,
quality: list,
neg_prompt: str,
cfg: float,
steps: int
) -> Tuple[str, Optional[Image.Image]]:
"""主处理流程"""
try:
# 输入处理
final_text = text.strip()
if audio and os.path.exists(audio):
final_text = transcribe_audio(audio) or final_text
# 提示词优化
enhanced = enhance_prompt(final_text, STYLE_OPTIONS[style], quality)
# 图像生成
start_time = time.time()
image = generate_image(enhanced, neg_prompt, cfg, steps)
time_cost = time.time() - start_time
return f"✅ 生成成功(耗时:{time_cost:.1f}s)\n{enhanced}", image
except Exception as e:
return f"❌ 生成失败:{str(e)}", None
# ---- Gradio界面 ----
with gr.Blocks(theme=gr.themes.Soft(), css=config.UI["warning_css"]) as app:
# 标题区
gr.Markdown(f"## {config.UI['title']}")
gr.Markdown(config.UI["description"])
# 状态提示
if not openai_available:
gr.HTML("<div class='warning'>⚠️ OpenAI服务未启用,使用基础提示优化</div>")
if isinstance(image_pipe, DummyPipe):
gr.HTML("<div class='warning'>⚠️ 图像生成功能不可用:模型加载失败</div>")
with gr.Row():
# 输入列
with gr.Column(scale=1):
input_text = gr.Textbox(
label="📝 输入描述",
placeholder="例:机械猫在火星咖啡馆喝咖啡",
max_lines=3
)
audio_input = gr.Audio(
sources=["microphone"],
type="filepath",
label="🎤 语音输入",
visible=bool(asr_pipeline)
)
with gr.Accordion("⚙️ 高级参数", open=False):
style_select = gr.Dropdown(
label="艺术风格",
choices=list(STYLE_OPTIONS.keys()),
value="🎥 电影风格"
)
quality_check = gr.CheckboxGroup(
label="质量增强",
choices=QUALITY_OPTIONS,
value=["高清细节"]
)
neg_prompt = gr.Textbox(
label="🚫 排除内容",
placeholder="输入不希望出现的元素..."
)
cfg_slider = gr.Slider(
1.0, 10.0,
value=config.DEFAULT_GUIDANCE,
label="生成引导强度"
)
steps_slider = gr.Slider(
5, config.MAX_STEPS,
value=config.DEFAULT_STEPS,
label="迭代步数"
)
generate_btn = gr.Button(
"✨ 开始生成",
variant="primary",
interactive=not isinstance(image_pipe, DummyPipe)
)
# 输出列
with gr.Column(scale=1):
prompt_output = gr.Textbox(
label="📋 生成提示",
interactive=False,
lines=4
)
image_output = gr.Image(
label="🖼️ 生成结果",
type="pil",
height=512,
show_download_button=True
)
# 事件绑定
inputs = [input_text, audio_input, style_select, quality_check, neg_prompt, cfg_slider, steps_slider]
generate_btn.click(process_inputs, inputs, [prompt_output, image_output])
# 音频输入自动清空文本
if asr_pipeline:
audio_input.change(
lambda x: "" if x else gr.update(),
audio_input, input_text
)
# ---- 启动应用 ----
if __name__ == "__main__":
app.launch(server_name="0.0.0.0", server_port=7860)
|