|
|
|
|
|
""" |
|
@Time : 2023/5/11 14:43 |
|
@Author : alexanderwu |
|
@File : action.py |
|
""" |
|
|
|
from __future__ import annotations |
|
|
|
from typing import Any, Optional, Union |
|
|
|
from pydantic import BaseModel, ConfigDict, Field, model_validator |
|
|
|
from metagpt.actions.action_node import ActionNode |
|
from metagpt.configs.models_config import ModelsConfig |
|
from metagpt.context_mixin import ContextMixin |
|
from metagpt.provider.llm_provider_registry import create_llm_instance |
|
from metagpt.schema import ( |
|
CodePlanAndChangeContext, |
|
CodeSummarizeContext, |
|
CodingContext, |
|
RunCodeContext, |
|
SerializationMixin, |
|
TestingContext, |
|
) |
|
from metagpt.utils.project_repo import ProjectRepo |
|
|
|
|
|
class Action(SerializationMixin, ContextMixin, BaseModel): |
|
model_config = ConfigDict(arbitrary_types_allowed=True) |
|
|
|
name: str = "" |
|
i_context: Union[ |
|
dict, CodingContext, CodeSummarizeContext, TestingContext, RunCodeContext, CodePlanAndChangeContext, str, None |
|
] = "" |
|
prefix: str = "" |
|
desc: str = "" |
|
node: ActionNode = Field(default=None, exclude=True) |
|
|
|
|
|
llm_name_or_type: Optional[str] = None |
|
|
|
@model_validator(mode="after") |
|
@classmethod |
|
def _update_private_llm(cls, data: Any) -> Any: |
|
config = ModelsConfig.default().get(data.llm_name_or_type) |
|
if config: |
|
llm = create_llm_instance(config) |
|
llm.cost_manager = data.llm.cost_manager |
|
data.llm = llm |
|
return data |
|
|
|
@property |
|
def repo(self) -> ProjectRepo: |
|
if not self.context.repo: |
|
self.context.repo = ProjectRepo(self.context.git_repo) |
|
return self.context.repo |
|
|
|
@property |
|
def prompt_schema(self): |
|
return self.config.prompt_schema |
|
|
|
@property |
|
def project_name(self): |
|
return self.config.project_name |
|
|
|
@project_name.setter |
|
def project_name(self, value): |
|
self.config.project_name = value |
|
|
|
@property |
|
def project_path(self): |
|
return self.config.project_path |
|
|
|
@model_validator(mode="before") |
|
@classmethod |
|
def set_name_if_empty(cls, values): |
|
if "name" not in values or not values["name"]: |
|
values["name"] = cls.__name__ |
|
return values |
|
|
|
@model_validator(mode="before") |
|
@classmethod |
|
def _init_with_instruction(cls, values): |
|
if "instruction" in values: |
|
name = values["name"] |
|
i = values.pop("instruction") |
|
values["node"] = ActionNode(key=name, expected_type=str, instruction=i, example="", schema="raw") |
|
return values |
|
|
|
def set_prefix(self, prefix): |
|
"""Set prefix for later usage""" |
|
self.prefix = prefix |
|
self.llm.system_prompt = prefix |
|
if self.node: |
|
self.node.llm = self.llm |
|
return self |
|
|
|
def __str__(self): |
|
return self.__class__.__name__ |
|
|
|
def __repr__(self): |
|
return self.__str__() |
|
|
|
async def _aask(self, prompt: str, system_msgs: Optional[list[str]] = None) -> str: |
|
"""Append default prefix""" |
|
return await self.llm.aask(prompt, system_msgs) |
|
|
|
async def _run_action_node(self, *args, **kwargs): |
|
"""Run action node""" |
|
msgs = args[0] |
|
context = "## History Messages\n" |
|
context += "\n".join([f"{idx}: {i}" for idx, i in enumerate(reversed(msgs))]) |
|
return await self.node.fill(context=context, llm=self.llm) |
|
|
|
async def run(self, *args, **kwargs): |
|
"""Run action""" |
|
if self.node: |
|
return await self._run_action_node(*args, **kwargs) |
|
raise NotImplementedError("The run method should be implemented in a subclass.") |
|
|