update
Browse files
app.py
CHANGED
@@ -33,42 +33,32 @@ class EmbeddingRequest(BaseModel):
|
|
33 |
input: Union[str, List[str]] # 修复类型定义
|
34 |
|
35 |
@app.post("/v1/embeddings")
|
36 |
-
async def embeddings(request:EmbeddingRequest, authorization: str = Depends(check_authorization)):
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
return {
|
42 |
-
"object": "list",
|
43 |
-
"data": [],
|
44 |
-
"model": "BAAI/bge-large-zh-v1.5",
|
45 |
-
"usage": {
|
46 |
-
"prompt_tokens": 0,
|
47 |
-
"total_tokens": 0
|
48 |
-
}
|
49 |
-
}
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
}
|
63 |
-
],
|
64 |
-
"model": "BAAI/bge-large-zh-v1.5",
|
65 |
-
"usage": {
|
66 |
-
"prompt_tokens": len(input),
|
67 |
-
"total_tokens": len(input)
|
68 |
-
}
|
69 |
-
}
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
33 |
input: Union[str, List[str]] # 修复类型定义
|
34 |
|
35 |
@app.post("/v1/embeddings")
|
36 |
+
async def embeddings(request: EmbeddingRequest, authorization: str = Depends(check_authorization)):
|
37 |
+
input_data = request.input
|
38 |
+
# 统一转换为列表处理
|
39 |
+
inputs = [input_data] if isinstance(input_data, str) else input_data
|
40 |
|
41 |
+
if not inputs:
|
42 |
+
return { ... } # 空输入处理
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# 计算嵌入向量(二维numpy数组)
|
45 |
+
embeddings = model.encode(inputs, normalize_embeddings=True)
|
46 |
|
47 |
+
# 构建符合OpenAI格式的响应
|
48 |
+
data_entries = []
|
49 |
+
for idx, embed in enumerate(embeddings):
|
50 |
+
data_entries.append({
|
51 |
+
"object": "embedding",
|
52 |
+
"embedding": embed.tolist(), # 每个embed是一维数组
|
53 |
+
"index": idx
|
54 |
+
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
return {
|
57 |
+
"object": "list",
|
58 |
+
"data": data_entries, # 包含每个输入的嵌入对象
|
59 |
+
"model": "BAAI/bge-large-zh-v1.5",
|
60 |
+
"usage": {
|
61 |
+
"prompt_tokens": sum(len(text) for text in inputs), # 粗略估计token数
|
62 |
+
"total_tokens": sum(len(text) for text in inputs)
|
63 |
+
}
|
64 |
+
}
|