import os import torch import torchaudio import librosa import streamlit as st from huggingface_hub import login from transformers import AutoProcessor, AutoModelForCTC import numpy as np # ================================ # 1️⃣ Authenticate with Hugging Face Hub (Securely) # ================================ HF_TOKEN = os.getenv("hf_token") if HF_TOKEN is None: raise ValueError("❌ Hugging Face API token not found. Please set it in Secrets.") login(token=HF_TOKEN) # ================================ # 2️⃣ Load Conformer Model & Processor # ================================ MODEL_NAME = "deepl-project/conformer-finetunning" processor = AutoProcessor.from_pretrained(MODEL_NAME) model = AutoModelForCTC.from_pretrained(MODEL_NAME) device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) print(f"✅ Conformer Model loaded on {device}") # ================================ # 3️⃣ Streamlit UI: Fine-Tuning Hyperparameter Selection # ================================ st.sidebar.title("🔧 Fine-Tuning Hyperparameters") num_epochs = st.sidebar.slider("Epochs", min_value=1, max_value=10, value=3) learning_rate = st.sidebar.select_slider("Learning Rate", options=[5e-4, 1e-4, 5e-5, 1e-5], value=5e-5) batch_size = st.sidebar.select_slider("Batch Size", options=[2, 4, 8, 16], value=8) attack_strength = st.sidebar.slider("Attack Strength", 0.0, 0.9, 0.1) # ================================ # 4️⃣ Streamlit ASR Web App (Fast Decoding & Security Features) # ================================ st.title("🎙️ Speech-to-Text ASR Conformer Model Finetunned on Libri Speech with Security Features 🎶") audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"]) if audio_file: audio_path = "temp_audio.wav" with open(audio_path, "wb") as f: f.write(audio_file.read()) speech, sr = librosa.load(audio_path, sr=16000) # Simulate an adversarial attack by injecting random noise adversarial_speech = speech + (attack_strength * np.random.randn(*speech.shape)) adversarial_speech = np.clip(adversarial_speech, -1.0, 1.0) inputs = processor(adversarial_speech, sampling_rate=sr, return_tensors="pt", padding=True) input_values = inputs.input_values.to(device) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) if attack_strength > 0.2: st.warning("⚠️ Adversarial attack detected! Transcription may be affected.") st.success("📄 Secure Transcription:") st.write(transcription[0])