|
import os |
|
import tarfile |
|
import torch |
|
import torchaudio |
|
import numpy as np |
|
import streamlit as st |
|
from datasets import load_dataset |
|
from transformers import ( |
|
AutoProcessor, |
|
AutoModelForSpeechSeq2Seq, |
|
TrainingArguments, |
|
Trainer, |
|
DataCollatorForSeq2Seq, |
|
) |
|
|
|
|
|
|
|
|
|
MODEL_NAME = "AqeelShafy7/AudioSangraha-Audio_to_Text" |
|
|
|
|
|
processor = AutoProcessor.from_pretrained(MODEL_NAME) |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
print(f"β
Model loaded on {device}") |
|
|
|
|
|
|
|
|
|
DATASET_TAR_PATH = "dev-clean.tar.gz" |
|
EXTRACT_PATH = "./librispeech_dev_clean" |
|
|
|
|
|
if not os.path.exists(EXTRACT_PATH): |
|
print("π Extracting dataset...") |
|
with tarfile.open(DATASET_TAR_PATH, "r:gz") as tar: |
|
tar.extractall(EXTRACT_PATH) |
|
print("β
Extraction complete.") |
|
else: |
|
print("β
Dataset already extracted.") |
|
|
|
|
|
dataset = load_dataset("librispeech_asr", data_dir=EXTRACT_PATH, split="train", trust_remote_code=True) |
|
print(f"β
Dataset Loaded Successfully! Size: {len(dataset)}") |
|
|
|
|
|
|
|
|
|
def preprocess_audio(batch): |
|
"""Converts raw audio to a model-compatible format.""" |
|
audio = batch["audio"] |
|
waveform, sample_rate = torchaudio.load(audio["path"]) |
|
|
|
|
|
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform) |
|
|
|
|
|
batch["input_values"] = processor(waveform.squeeze().numpy(), sampling_rate=16000).input_values[0] |
|
batch["labels"] = processor.tokenizer(batch["text"]).input_ids |
|
return batch |
|
|
|
|
|
dataset = dataset.map(preprocess_audio, remove_columns=["audio"]) |
|
print(f"β
Dataset Preprocessed! Ready for Fine-Tuning.") |
|
|
|
|
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./asr_model_finetuned", |
|
evaluation_strategy="epoch", |
|
save_strategy="epoch", |
|
learning_rate=5e-5, |
|
per_device_train_batch_size=8, |
|
per_device_eval_batch_size=8, |
|
num_train_epochs=3, |
|
weight_decay=0.01, |
|
logging_dir="./logs", |
|
logging_steps=500, |
|
save_total_limit=2, |
|
push_to_hub=True, |
|
metric_for_best_model="wer", |
|
greater_is_better=False, |
|
save_on_each_node=True, |
|
load_best_model_at_end=True, |
|
) |
|
|
|
|
|
data_collator = DataCollatorForSeq2Seq(processor.tokenizer, model=model) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset, |
|
eval_dataset=None, |
|
tokenizer=processor.feature_extractor, |
|
data_collator=data_collator, |
|
) |
|
|
|
|
|
|
|
|
|
if st.button("Start Fine-Tuning"): |
|
with st.spinner("Fine-tuning in progress... Please wait!"): |
|
trainer.train() |
|
st.success("β
Fine-Tuning Completed! Model updated.") |
|
|
|
|
|
|
|
|
|
st.title("ποΈ Speech-to-Text ASR with Fine-Tuning πΆ") |
|
|
|
|
|
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"]) |
|
|
|
if audio_file: |
|
|
|
audio_path = "temp_audio.wav" |
|
with open(audio_path, "wb") as f: |
|
f.write(audio_file.read()) |
|
|
|
|
|
waveform, sample_rate = torchaudio.load(audio_path) |
|
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform) |
|
|
|
|
|
input_values = processor(waveform.squeeze().numpy(), sampling_rate=16000).input_values[0] |
|
|
|
|
|
with torch.no_grad(): |
|
input_tensor = torch.tensor([input_values]).to(device) |
|
logits = model(input_tensor).logits |
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
transcription = processor.batch_decode(predicted_ids)[0] |
|
|
|
|
|
st.success("π Transcription:") |
|
st.write(transcription) |
|
|
|
|
|
|
|
|
|
user_correction = st.text_area("π§ Correct the transcription (if needed):", transcription) |
|
|
|
if st.button("Fine-Tune with Correction"): |
|
if user_correction: |
|
corrected_input = processor.tokenizer(user_correction).input_ids |
|
|
|
|
|
dataset = dataset.add_item({"input_values": input_values, "labels": corrected_input}) |
|
|
|
|
|
trainer.args.num_train_epochs = 1 |
|
trainer.train() |
|
|
|
st.success("β
Model fine-tuned with new correction! Try another audio file.") |
|
|