File size: 6,039 Bytes
cd7aa15
fcd8965
cd7aa15
 
 
 
 
 
 
 
 
 
 
f0a5b40
cd7aa15
 
 
 
 
 
 
 
f0a5b40
 
 
 
cd7aa15
098a61e
cd7aa15
1bb8243
cd7aa15
3a79217
 
098a61e
3a79217
cd7aa15
 
 
 
 
fcd8965
 
f0a5b40
3a79217
1bb8243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393feaa
cd7aa15
7d7504d
cd7aa15
d2d38cf
 
 
cd7aa15
d2d38cf
f0a5b40
cd7aa15
3a79217
7d7504d
d2d38cf
7d7504d
d2d38cf
 
3a79217
f0a5b40
3a79217
 
 
 
 
 
f0a5b40
cd7aa15
 
 
f0a5b40
 
3a79217
f0a5b40
 
 
 
 
 
 
 
 
cd7aa15
f0a5b40
 
cd7aa15
3a79217
f0a5b40
3a79217
f0a5b40
 
 
3a79217
 
 
f0a5b40
 
 
cd7aa15
 
 
 
 
 
 
f0a5b40
cd7aa15
 
 
 
f0a5b40
 
 
 
 
cd7aa15
 
 
f0a5b40
 
cd7aa15
 
f0a5b40
 
3a79217
7d7504d
f0a5b40
cd7aa15
f0a5b40
7d7504d
f0a5b40
 
 
 
 
cd7aa15
f0a5b40
 
cd7aa15
 
 
 
 
 
f0a5b40
 
 
cd7aa15
7d7504d
f0a5b40
cd7aa15
 
f0a5b40
 
cd7aa15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import tarfile
import torch
import torchaudio
import numpy as np
import streamlit as st
from transformers import (
    AutoProcessor,
    AutoModelForSpeechSeq2Seq,
    TrainingArguments,
    Trainer,
    DataCollatorForSeq2Seq,
)

# ================================
# 1️⃣ Load Model & Processor
# ================================
MODEL_NAME = "AqeelShafy7/AudioSangraha-Audio_to_Text"

# Load ASR model and processor
processor = AutoProcessor.from_pretrained(MODEL_NAME)
model = AutoModelForSpeechSeq2Seq.from_pretrained(MODEL_NAME)

# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
print(f"βœ… Model loaded on {device}")

# ================================
# 2️⃣ Load Dataset (Recursively from Extracted Path)
# ================================
DATASET_TAR_PATH = "dev-clean.tar.gz"
EXTRACT_PATH = "./librispeech_dev_clean"

# Extract dataset if not already extracted
if not os.path.exists(EXTRACT_PATH):
    print("πŸ”„ Extracting dataset...")
    with tarfile.open(DATASET_TAR_PATH, "r:gz") as tar:
        tar.extractall(EXTRACT_PATH)
    print("βœ… Extraction complete.")
else:
    print("βœ… Dataset already extracted.")

# Base directory where audio files are stored
AUDIO_FOLDER = os.path.join(EXTRACT_PATH, "LibriSpeech", "dev-clean")

# Recursively find all `.flac` files inside the dataset directory
def find_audio_files(base_folder):
    """Recursively search for all .flac files in subdirectories."""
    audio_files = []
    for root, _, files in os.walk(base_folder):
        for file in files:
            if file.endswith(".flac"):
                audio_files.append(os.path.join(root, file))
    return audio_files

# Get all audio files
audio_files = find_audio_files(AUDIO_FOLDER)

if not audio_files:
    raise FileNotFoundError(f"❌ No .flac files found in {AUDIO_FOLDER}. Check dataset structure!")

print(f"βœ… Found {len(audio_files)} audio files in dataset!")

# ================================
# 3️⃣ Preprocess Dataset (Fixed input_features)
# ================================
def load_and_process_audio(audio_path):
    """Loads and processes a single audio file into model format."""
    waveform, sample_rate = torchaudio.load(audio_path)

    # Resample to 16kHz
    waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)

    # Convert to model input format
    input_features = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt").input_features[0]

    return input_features

# Manually create dataset structure
dataset = [{"input_features": load_and_process_audio(f), "labels": []} for f in audio_files[:100]]

# Split dataset into train and eval (Recommended Fix)
train_size = int(0.9 * len(dataset))
train_dataset = dataset[:train_size]
eval_dataset = dataset[train_size:]

print(f"βœ… Dataset Loaded! Training: {len(train_dataset)}, Evaluation: {len(eval_dataset)}")

# ================================
# 4️⃣ Training Arguments & Trainer
# ================================
training_args = TrainingArguments(
    output_dir="./asr_model_finetuned",
    eval_strategy="epoch",  # Fix: Proper evaluation
    save_strategy="epoch",
    learning_rate=5e-5,
    per_device_train_batch_size=8,
    per_device_eval_batch_size=8,
    num_train_epochs=3,
    weight_decay=0.01,
    logging_dir="./logs",
    logging_steps=500,
    save_total_limit=2,
    push_to_hub=True,
)

# Data collator (for dynamic padding)
data_collator = DataCollatorForSeq2Seq(processor, model=model)

# Define Trainer (Fixed `processing_class` warning)
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,  # Fix: Providing eval_dataset
    processing_class=processor,  # Fix: Replacing deprecated `tokenizer`
    data_collator=data_collator,
)

# ================================
# 5️⃣ Fine-Tuning Execution
# ================================
if st.button("Start Fine-Tuning"):
    with st.spinner("Fine-tuning in progress... Please wait!"):
        trainer.train()
    st.success("βœ… Fine-Tuning Completed! Model updated.")

# ================================
# 6️⃣ Streamlit ASR Web App
# ================================
st.title("πŸŽ™οΈ Speech-to-Text ASR with Fine-Tuning 🎢")

# Upload audio file
audio_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "flac"])

if audio_file:
    # Save uploaded file temporarily
    audio_path = "temp_audio.wav"
    with open(audio_path, "wb") as f:
        f.write(audio_file.read())

    # Load and process audio
    waveform, sample_rate = torchaudio.load(audio_path)
    waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)

    # Convert audio to model input
    input_features = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt").input_features[0]

    # Perform ASR inference
    with torch.no_grad():
        input_tensor = torch.tensor([input_features]).to(device)
        logits = model(input_tensor).logits
        predicted_ids = torch.argmax(logits, dim=-1)
        transcription = processor.batch_decode(predicted_ids)[0]

    # Display transcription
    st.success("πŸ“„ Transcription:")
    st.write(transcription)

    # ================================
    # 7️⃣ Fine-Tune Model with User Correction
    # ================================
    user_correction = st.text_area("πŸ”§ Correct the transcription (if needed):", transcription)

    if st.button("Fine-Tune with Correction"):
        if user_correction:
            corrected_input = processor.tokenizer(user_correction).input_ids

            # Dynamically add new example to dataset
            dataset.append({"input_features": input_features, "labels": corrected_input})

            # Perform quick re-training (1 epoch)
            trainer.args.num_train_epochs = 1
            trainer.train()

            st.success("βœ… Model fine-tuned with new correction! Try another audio file.")