|
from __future__ import annotations |
|
|
|
import os |
|
import pathlib |
|
import shlex |
|
import subprocess |
|
import sys |
|
import json |
|
|
|
def run_command(command): |
|
try: |
|
subprocess.run(shlex.split(command), check=True, capture_output=True, text=True) |
|
except subprocess.CalledProcessError as e: |
|
print(f"Error running command '{command}':") |
|
print(f"Exit code: {e.returncode}") |
|
print(f"stdout: {e.stdout}") |
|
print(f"stderr: {e.stderr}") |
|
raise |
|
|
|
if os.getenv("SYSTEM") == "spaces": |
|
try: |
|
|
|
run_command("pip install --upgrade pip") |
|
|
|
|
|
run_command("pip install openmim==0.3.9") |
|
|
|
|
|
run_command("pip install click==8.0.4") |
|
|
|
from mmcv.utils import install_module, uninstall_module |
|
|
|
uninstall_module("mmcv-full") |
|
install_module("mmcv-full==1.5.0") |
|
|
|
run_command("pip uninstall -y opencv-python") |
|
run_command("pip uninstall -y opencv-python-headless") |
|
run_command("pip install opencv-python-headless==4.5.5.64") |
|
except Exception as e: |
|
print(f"An error occurred during setup: {str(e)}") |
|
sys.exit(1) |
|
|
|
import huggingface_hub |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
app_dir = pathlib.Path(__file__).parent |
|
submodule_dir = app_dir / "ViTPose" |
|
sys.path.insert(0, submodule_dir.as_posix()) |
|
|
|
from mmdet.apis import inference_detector, init_detector |
|
from mmpose.apis import ( |
|
inference_top_down_pose_model, |
|
init_pose_model, |
|
process_mmdet_results, |
|
vis_pose_result, |
|
) |
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
class DetModel: |
|
MODEL_DICT = { |
|
"YOLOX-tiny": { |
|
"config": "mmdet_configs/configs/yolox/yolox_tiny_8x8_300e_coco.py", |
|
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_tiny_8x8_300e_coco/yolox_tiny_8x8_300e_coco_20211124_171234-b4047906.pth", |
|
}, |
|
"YOLOX-s": { |
|
"config": "mmdet_configs/configs/yolox/yolox_s_8x8_300e_coco.py", |
|
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_s_8x8_300e_coco/yolox_s_8x8_300e_coco_20211121_095711-4592a793.pth", |
|
}, |
|
"YOLOX-l": { |
|
"config": "mmdet_configs/configs/yolox/yolox_l_8x8_300e_coco.py", |
|
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth", |
|
}, |
|
"YOLOX-x": { |
|
"config": "mmdet_configs/configs/yolox/yolox_x_8x8_300e_coco.py", |
|
"model": "https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_x_8x8_300e_coco/yolox_x_8x8_300e_coco_20211126_140254-1ef88d67.pth", |
|
}, |
|
} |
|
|
|
def __init__(self): |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
self._load_all_models_once() |
|
self.model_name = "YOLOX-l" |
|
self.model = self._load_model(self.model_name) |
|
|
|
def _load_all_models_once(self) -> None: |
|
for name in self.MODEL_DICT: |
|
self._load_model(name) |
|
|
|
def _load_model(self, name: str) -> nn.Module: |
|
dic = self.MODEL_DICT[name] |
|
return init_detector(dic["config"], dic["model"], device=self.device) |
|
|
|
def set_model(self, name: str) -> None: |
|
if name == self.model_name: |
|
return |
|
self.model_name = name |
|
self.model = self._load_model(name) |
|
|
|
def detect_and_visualize( |
|
self, image: np.ndarray, score_threshold: float |
|
) -> tuple[list[np.ndarray], np.ndarray]: |
|
out, outjson = self.detect(image) |
|
vis = self.visualize_detection_results(image, out, score_threshold) |
|
return out, vis, outjson |
|
|
|
def detect(self, image: np.ndarray) -> list[np.ndarray]: |
|
image = image[:, :, ::-1] |
|
out = inference_detector(self.model, image) |
|
|
|
out2 = [arr.tolist() for arr in out] |
|
|
|
out_json = json.dumps(out2) |
|
return out, out_json |
|
|
|
def visualize_detection_results( |
|
self, |
|
image: np.ndarray, |
|
detection_results: list[np.ndarray], |
|
score_threshold: float = 0.3, |
|
) -> np.ndarray: |
|
person_det = [detection_results[0]] + [np.array([]).reshape(0, 5)] * 79 |
|
|
|
image = image[:, :, ::-1] |
|
vis = self.model.show_result( |
|
image, |
|
person_det, |
|
score_thr=score_threshold, |
|
bbox_color=None, |
|
text_color=(200, 200, 200), |
|
mask_color=None, |
|
) |
|
return vis[:, :, ::-1] |
|
|
|
|
|
class AppDetModel(DetModel): |
|
def run( |
|
self, model_name: str, image: np.ndarray, score_threshold: float |
|
) -> tuple[list[np.ndarray], np.ndarray]: |
|
self.set_model(model_name) |
|
return self.detect_and_visualize(image, score_threshold) |
|
|
|
|
|
class PoseModel: |
|
MODEL_DICT = { |
|
"ViTPose-B (single-task train)": { |
|
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py", |
|
"model": "vitpose-b.pth", |
|
}, |
|
"ViTPose-L (single-task train)": { |
|
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py", |
|
"model": "vitpose-l.pth", |
|
}, |
|
"ViTPose-B (multi-task train, COCO)": { |
|
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_base_coco_256x192.py", |
|
"model": "vitpose-b-multi-coco.pth", |
|
}, |
|
"ViTPose-L (multi-task train, COCO)": { |
|
"config": "ViTPose/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/ViTPose_large_coco_256x192.py", |
|
"model": "vitpose-l-multi-coco.pth", |
|
}, |
|
} |
|
|
|
def __init__(self): |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
self.model_name = "ViTPose-B (multi-task train, COCO)" |
|
self.model = self._load_model(self.model_name) |
|
|
|
def _load_all_models_once(self) -> None: |
|
for name in self.MODEL_DICT: |
|
self._load_model(name) |
|
|
|
def _load_model(self, name: str) -> nn.Module: |
|
dic = self.MODEL_DICT[name] |
|
ckpt_path = huggingface_hub.hf_hub_download( |
|
"taesiri/ViTPose", dic["model"], use_auth_token=HF_TOKEN |
|
) |
|
model = init_pose_model(dic["config"], ckpt_path, device=self.device) |
|
return model |
|
|
|
def set_model(self, name: str) -> None: |
|
if name == self.model_name: |
|
return |
|
self.model_name = name |
|
self.model = self._load_model(name) |
|
|
|
def predict_pose_and_visualize( |
|
self, |
|
image: np.ndarray, |
|
det_results: list[np.ndarray], |
|
box_score_threshold: float, |
|
kpt_score_threshold: float, |
|
vis_dot_radius: int, |
|
vis_line_thickness: int, |
|
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]: |
|
out, outjson = self.predict_pose(image, det_results, box_score_threshold) |
|
vis = self.visualize_pose_results( |
|
image, out, kpt_score_threshold, vis_dot_radius, vis_line_thickness |
|
) |
|
return out, vis, outjson |
|
|
|
def predict_pose( |
|
self, |
|
image: np.ndarray, |
|
det_results: list[np.ndarray], |
|
box_score_threshold: float = 0.5, |
|
) -> list[dict[str, np.ndarray]]: |
|
image = image[:, :, ::-1] |
|
person_results = process_mmdet_results(det_results, 1) |
|
out, _ = inference_top_down_pose_model( |
|
self.model, |
|
image, |
|
person_results=person_results, |
|
bbox_thr=box_score_threshold, |
|
format="xyxy", |
|
) |
|
|
|
out_for_json = [ |
|
{ |
|
k: (v.tolist() if isinstance(v, np.ndarray) else v) |
|
for k, v in person.items() |
|
} |
|
for person in out |
|
] |
|
|
|
outjson = json.dumps(out_for_json) |
|
|
|
return out, outjson |
|
|
|
def visualize_pose_results( |
|
self, |
|
image: np.ndarray, |
|
pose_results: list[np.ndarray], |
|
kpt_score_threshold: float = 0.3, |
|
vis_dot_radius: int = 4, |
|
vis_line_thickness: int = 1, |
|
) -> np.ndarray: |
|
image = image[:, :, ::-1] |
|
vis = vis_pose_result( |
|
self.model, |
|
image, |
|
pose_results, |
|
kpt_score_thr=kpt_score_threshold, |
|
radius=vis_dot_radius, |
|
thickness=vis_line_thickness, |
|
) |
|
return vis[:, :, ::-1] |
|
|
|
|
|
class AppPoseModel(PoseModel): |
|
def run( |
|
self, |
|
model_name: str, |
|
image: np.ndarray, |
|
det_results: list[np.ndarray], |
|
box_score_threshold: float, |
|
kpt_score_threshold: float, |
|
vis_dot_radius: int, |
|
vis_line_thickness: int, |
|
) -> tuple[list[dict[str, np.ndarray]], np.ndarray]: |
|
self.set_model(model_name) |
|
return self.predict_pose_and_visualize( |
|
image, |
|
det_results, |
|
box_score_threshold, |
|
kpt_score_threshold, |
|
vis_dot_radius, |
|
vis_line_thickness, |
|
) |
|
|