|
|
|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import pathlib |
|
import tarfile |
|
|
|
import gradio as gr |
|
|
|
from model import AppDetModel, AppPoseModel |
|
|
|
DESCRIPTION = "# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)" |
|
|
|
|
|
def set_example_image(example: list) -> dict: |
|
return gr.Image.update(value=example[0]) |
|
|
|
|
|
def extract_tar() -> None: |
|
if pathlib.Path("mmdet_configs/configs").exists(): |
|
return |
|
with tarfile.open("mmdet_configs/configs.tar") as f: |
|
f.extractall("mmdet_configs") |
|
|
|
|
|
extract_tar() |
|
|
|
det_model = AppDetModel() |
|
pose_model = AppPoseModel() |
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Box(): |
|
gr.Markdown("## Step 1") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
input_image = gr.Image(label="Input Image", type="numpy") |
|
with gr.Row(): |
|
detector_name = gr.Dropdown( |
|
label="Detector", |
|
choices=list(det_model.MODEL_DICT.keys()), |
|
value=det_model.model_name, |
|
) |
|
with gr.Row(): |
|
detect_button = gr.Button("Detect") |
|
det_preds = gr.Variable() |
|
with gr.Column(): |
|
with gr.Row(): |
|
detection_visualization = gr.Image( |
|
label="Detection Result", type="numpy", elem_id="det-result" |
|
) |
|
with gr.Row(): |
|
vis_det_score_threshold = gr.Slider( |
|
label="Visualization Score Threshold", |
|
minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
value=0.5, |
|
) |
|
with gr.Row(): |
|
redraw_det_button = gr.Button(value="Redraw") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("JSON", open=False): |
|
json_detect = gr.JSON() |
|
|
|
with gr.Row(): |
|
paths = sorted(pathlib.Path("images").rglob("*.jpg")) |
|
example_images = gr.Examples( |
|
examples=[[path.as_posix()] for path in paths], inputs=input_image |
|
) |
|
|
|
with gr.Box(): |
|
gr.Markdown("## Step 2") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
pose_model_name = gr.Dropdown( |
|
label="Pose Model", |
|
choices=list(pose_model.MODEL_DICT.keys()), |
|
value=pose_model.model_name, |
|
) |
|
det_score_threshold = gr.Slider( |
|
label="Box Score Threshold", |
|
minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
value=0.5, |
|
) |
|
with gr.Row(): |
|
predict_button = gr.Button("Predict") |
|
pose_preds = gr.Variable() |
|
with gr.Column(): |
|
with gr.Row(): |
|
pose_visualization = gr.Image( |
|
label="Result", type="numpy", elem_id="pose-result" |
|
) |
|
with gr.Row(): |
|
vis_kpt_score_threshold = gr.Slider( |
|
label="Visualization Score Threshold", |
|
minimum=0, |
|
maximum=1, |
|
step=0.05, |
|
value=0.3, |
|
) |
|
with gr.Row(): |
|
vis_dot_radius = gr.Slider( |
|
label="Dot Radius", minimum=1, maximum=10, step=1, value=4 |
|
) |
|
with gr.Row(): |
|
vis_line_thickness = gr.Slider( |
|
label="Line Thickness", minimum=1, maximum=10, step=1, value=2 |
|
) |
|
with gr.Row(): |
|
redraw_pose_button = gr.Button("Redraw") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("JSON", open=False): |
|
json_pose = gr.JSON() |
|
|
|
detect_button.click( |
|
fn=det_model.run, |
|
inputs=[ |
|
detector_name, |
|
input_image, |
|
vis_det_score_threshold, |
|
], |
|
outputs=[det_preds, detection_visualization, json_detect], |
|
) |
|
|
|
detector_name.change(fn=det_model.set_model, inputs=detector_name, outputs=None) |
|
detect_button.click( |
|
fn=det_model.run, |
|
inputs=[ |
|
detector_name, |
|
input_image, |
|
vis_det_score_threshold, |
|
], |
|
outputs=[ |
|
det_preds, |
|
detection_visualization, |
|
], |
|
) |
|
redraw_det_button.click( |
|
fn=det_model.visualize_detection_results, |
|
inputs=[ |
|
input_image, |
|
det_preds, |
|
vis_det_score_threshold, |
|
], |
|
outputs=detection_visualization, |
|
) |
|
|
|
pose_model_name.change( |
|
fn=pose_model.set_model, inputs=pose_model_name, outputs=None |
|
) |
|
predict_button.click( |
|
fn=pose_model.run, |
|
inputs=[ |
|
pose_model_name, |
|
input_image, |
|
det_preds, |
|
det_score_threshold, |
|
vis_kpt_score_threshold, |
|
vis_dot_radius, |
|
vis_line_thickness, |
|
], |
|
outputs=[pose_preds, pose_visualization, json_pose], |
|
) |
|
redraw_pose_button.click( |
|
fn=pose_model.visualize_pose_results, |
|
inputs=[ |
|
input_image, |
|
pose_preds, |
|
vis_kpt_score_threshold, |
|
vis_dot_radius, |
|
vis_line_thickness, |
|
], |
|
outputs=pose_visualization, |
|
) |
|
|
|
demo.queue(api_open=False).launch() |
|
|