ViTPose / app.py
taesiri's picture
backup
d997a46
#!/usr/bin/env python
from __future__ import annotations
import argparse
import pathlib
import tarfile
import gradio as gr
from model import AppDetModel, AppPoseModel
DESCRIPTION = "# [ViTPose](https://github.com/ViTAE-Transformer/ViTPose)"
def set_example_image(example: list) -> dict:
return gr.Image.update(value=example[0])
def extract_tar() -> None:
if pathlib.Path("mmdet_configs/configs").exists():
return
with tarfile.open("mmdet_configs/configs.tar") as f:
f.extractall("mmdet_configs")
extract_tar()
det_model = AppDetModel()
pose_model = AppPoseModel()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Box():
gr.Markdown("## Step 1")
with gr.Row():
with gr.Column():
with gr.Row():
input_image = gr.Image(label="Input Image", type="numpy")
with gr.Row():
detector_name = gr.Dropdown(
label="Detector",
choices=list(det_model.MODEL_DICT.keys()),
value=det_model.model_name,
)
with gr.Row():
detect_button = gr.Button("Detect")
det_preds = gr.Variable()
with gr.Column():
with gr.Row():
detection_visualization = gr.Image(
label="Detection Result", type="numpy", elem_id="det-result"
)
with gr.Row():
vis_det_score_threshold = gr.Slider(
label="Visualization Score Threshold",
minimum=0,
maximum=1,
step=0.05,
value=0.5,
)
with gr.Row():
redraw_det_button = gr.Button(value="Redraw")
with gr.Row():
with gr.Accordion("JSON", open=False):
json_detect = gr.JSON()
with gr.Row():
paths = sorted(pathlib.Path("images").rglob("*.jpg"))
example_images = gr.Examples(
examples=[[path.as_posix()] for path in paths], inputs=input_image
)
with gr.Box():
gr.Markdown("## Step 2")
with gr.Row():
with gr.Column():
with gr.Row():
pose_model_name = gr.Dropdown(
label="Pose Model",
choices=list(pose_model.MODEL_DICT.keys()),
value=pose_model.model_name,
)
det_score_threshold = gr.Slider(
label="Box Score Threshold",
minimum=0,
maximum=1,
step=0.05,
value=0.5,
)
with gr.Row():
predict_button = gr.Button("Predict")
pose_preds = gr.Variable()
with gr.Column():
with gr.Row():
pose_visualization = gr.Image(
label="Result", type="numpy", elem_id="pose-result"
)
with gr.Row():
vis_kpt_score_threshold = gr.Slider(
label="Visualization Score Threshold",
minimum=0,
maximum=1,
step=0.05,
value=0.3,
)
with gr.Row():
vis_dot_radius = gr.Slider(
label="Dot Radius", minimum=1, maximum=10, step=1, value=4
)
with gr.Row():
vis_line_thickness = gr.Slider(
label="Line Thickness", minimum=1, maximum=10, step=1, value=2
)
with gr.Row():
redraw_pose_button = gr.Button("Redraw")
with gr.Row():
with gr.Accordion("JSON", open=False):
json_pose = gr.JSON()
detect_button.click(
fn=det_model.run,
inputs=[
detector_name,
input_image,
vis_det_score_threshold,
],
outputs=[det_preds, detection_visualization, json_detect],
)
detector_name.change(fn=det_model.set_model, inputs=detector_name, outputs=None)
detect_button.click(
fn=det_model.run,
inputs=[
detector_name,
input_image,
vis_det_score_threshold,
],
outputs=[
det_preds,
detection_visualization,
],
)
redraw_det_button.click(
fn=det_model.visualize_detection_results,
inputs=[
input_image,
det_preds,
vis_det_score_threshold,
],
outputs=detection_visualization,
)
pose_model_name.change(
fn=pose_model.set_model, inputs=pose_model_name, outputs=None
)
predict_button.click(
fn=pose_model.run,
inputs=[
pose_model_name,
input_image,
det_preds,
det_score_threshold,
vis_kpt_score_threshold,
vis_dot_radius,
vis_line_thickness,
],
outputs=[pose_preds, pose_visualization, json_pose],
)
redraw_pose_button.click(
fn=pose_model.visualize_pose_results,
inputs=[
input_image,
pose_preds,
vis_kpt_score_threshold,
vis_dot_radius,
vis_line_thickness,
],
outputs=pose_visualization,
)
demo.queue(api_open=False).launch()