Spaces:
Sleeping
Sleeping
backup
Browse files- app.py +29 -16
- extract_samples.py +137 -0
app.py
CHANGED
@@ -34,7 +34,6 @@ dataset_post_ids = list(
|
|
34 |
photoexp = pd.read_csv("./photoexp_filtered.csv")
|
35 |
valid_post_ids = set(photoexp.post_id.tolist())
|
36 |
|
37 |
-
# filter RESULTS_BACKUP_REPO to include only valid_post_ids using batched processing
|
38 |
dataset = dataset.filter(
|
39 |
lambda xs: [x in valid_post_ids for x in xs["post_id"]],
|
40 |
batched=True,
|
@@ -51,47 +50,61 @@ def sync_with_hub():
|
|
51 |
"""
|
52 |
print("Starting sync with hub...")
|
53 |
data_dir = Path("./data")
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
# Clone/pull latest data from hub
|
62 |
-
# Use token in the URL for authentication following HF's new format
|
63 |
token = os.environ["HF_TOKEN"]
|
64 |
-
username = "taesiri"
|
65 |
repo_url = (
|
66 |
f"https://{username}:{token}@huggingface.co/datasets/{RESULTS_BACKUP_REPO}"
|
67 |
)
|
68 |
hub_data_dir = Path("hub_data")
|
69 |
|
70 |
if hub_data_dir.exists():
|
71 |
-
# If repo exists, do a git pull
|
72 |
print("Pulling latest changes...")
|
73 |
repo = git.Repo(hub_data_dir)
|
74 |
origin = repo.remotes.origin
|
75 |
-
# Set the new URL with token
|
76 |
if "https://" in origin.url:
|
77 |
origin.set_url(repo_url)
|
78 |
origin.pull()
|
79 |
else:
|
80 |
-
# Clone the repo with token
|
81 |
print("Cloning repository...")
|
82 |
git.Repo.clone_from(repo_url, hub_data_dir)
|
83 |
|
84 |
# Merge hub data with local data
|
85 |
hub_data_source = hub_data_dir / "data"
|
86 |
if hub_data_source.exists():
|
87 |
-
# Create data dir if it doesn't exist
|
88 |
data_dir.mkdir(exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
# Copy files from hub
|
91 |
for item in hub_data_source.glob("*"):
|
92 |
-
if item.
|
|
|
|
|
93 |
dest = data_dir / item.name
|
94 |
-
if not dest.exists():
|
95 |
shutil.copytree(item, dest)
|
96 |
|
97 |
# Clean up cloned repo
|
|
|
34 |
photoexp = pd.read_csv("./photoexp_filtered.csv")
|
35 |
valid_post_ids = set(photoexp.post_id.tolist())
|
36 |
|
|
|
37 |
dataset = dataset.filter(
|
38 |
lambda xs: [x in valid_post_ids for x in xs["post_id"]],
|
39 |
batched=True,
|
|
|
50 |
"""
|
51 |
print("Starting sync with hub...")
|
52 |
data_dir = Path("./data")
|
53 |
+
local_csv_path = data_dir / "evaluation_results_exp.csv"
|
54 |
+
|
55 |
+
# Read existing local data if it exists
|
56 |
+
local_data = None
|
57 |
+
if local_csv_path.exists():
|
58 |
+
local_data = pd.read_csv(local_csv_path)
|
59 |
+
print(f"Found local data with {len(local_data)} entries")
|
60 |
|
61 |
# Clone/pull latest data from hub
|
|
|
62 |
token = os.environ["HF_TOKEN"]
|
63 |
+
username = "taesiri"
|
64 |
repo_url = (
|
65 |
f"https://{username}:{token}@huggingface.co/datasets/{RESULTS_BACKUP_REPO}"
|
66 |
)
|
67 |
hub_data_dir = Path("hub_data")
|
68 |
|
69 |
if hub_data_dir.exists():
|
|
|
70 |
print("Pulling latest changes...")
|
71 |
repo = git.Repo(hub_data_dir)
|
72 |
origin = repo.remotes.origin
|
|
|
73 |
if "https://" in origin.url:
|
74 |
origin.set_url(repo_url)
|
75 |
origin.pull()
|
76 |
else:
|
|
|
77 |
print("Cloning repository...")
|
78 |
git.Repo.clone_from(repo_url, hub_data_dir)
|
79 |
|
80 |
# Merge hub data with local data
|
81 |
hub_data_source = hub_data_dir / "data"
|
82 |
if hub_data_source.exists():
|
|
|
83 |
data_dir.mkdir(exist_ok=True)
|
84 |
+
hub_csv_path = hub_data_source / "evaluation_results_exp.csv"
|
85 |
+
|
86 |
+
if hub_csv_path.exists():
|
87 |
+
hub_data = pd.read_csv(hub_csv_path)
|
88 |
+
print(f"Found hub data with {len(hub_data)} entries")
|
89 |
+
|
90 |
+
if local_data is not None:
|
91 |
+
# Merge data, keeping all entries and removing exact duplicates
|
92 |
+
merged_data = pd.concat([local_data, hub_data]).drop_duplicates()
|
93 |
+
print(f"Merged data has {len(merged_data)} entries")
|
94 |
+
|
95 |
+
# Save merged data
|
96 |
+
merged_data.to_csv(local_csv_path, index=False)
|
97 |
+
else:
|
98 |
+
# If no local data exists, just copy hub data
|
99 |
+
shutil.copy2(hub_csv_path, local_csv_path)
|
100 |
|
101 |
+
# Copy any other files from hub
|
102 |
for item in hub_data_source.glob("*"):
|
103 |
+
if item.is_file() and item.name != "evaluation_results_exp.csv":
|
104 |
+
shutil.copy2(item, data_dir / item.name)
|
105 |
+
elif item.is_dir():
|
106 |
dest = data_dir / item.name
|
107 |
+
if not dest.exists():
|
108 |
shutil.copytree(item, dest)
|
109 |
|
110 |
# Clean up cloned repo
|
extract_samples.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from datasets import load_dataset
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
import requests
|
7 |
+
from PIL import Image
|
8 |
+
from io import BytesIO
|
9 |
+
|
10 |
+
# Load the experimental dataset
|
11 |
+
dataset = load_dataset("taesiri/IERv2-BattleResults_exp", split="train")
|
12 |
+
dataset_post_ids = list(
|
13 |
+
set(
|
14 |
+
load_dataset(
|
15 |
+
"taesiri/IERv2-BattleResults_exp", columns=["post_id"], split="train"
|
16 |
+
)
|
17 |
+
.to_pandas()
|
18 |
+
.post_id.tolist()
|
19 |
+
)
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load and filter photoexp dataset
|
23 |
+
photoexp = pd.read_csv("./photoexp_filtered.csv")
|
24 |
+
valid_post_ids = set(photoexp.post_id.tolist())
|
25 |
+
|
26 |
+
# Filter dataset to include only valid_post_ids
|
27 |
+
dataset = dataset.filter(
|
28 |
+
lambda xs: [x in valid_post_ids for x in xs["post_id"]],
|
29 |
+
batched=True,
|
30 |
+
batch_size=256,
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def download_and_save_image(url, save_path):
|
35 |
+
"""Download image from URL and save it to disk"""
|
36 |
+
try:
|
37 |
+
response = requests.get(url)
|
38 |
+
response.raise_for_status()
|
39 |
+
img = Image.open(BytesIO(response.content))
|
40 |
+
img.save(save_path)
|
41 |
+
return True
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error downloading image {url}: {e}")
|
44 |
+
return False
|
45 |
+
|
46 |
+
|
47 |
+
def get_random_sample():
|
48 |
+
"""Get a random sample by first selecting a post_id then picking random edits for that post."""
|
49 |
+
# First randomly select a post_id from valid posts
|
50 |
+
random_post_id = random.choice(list(valid_post_ids))
|
51 |
+
|
52 |
+
# Filter dataset for this post_id
|
53 |
+
post_edits = dataset.filter(
|
54 |
+
lambda xs: [x == random_post_id for x in xs["post_id"]],
|
55 |
+
batched=True,
|
56 |
+
batch_size=256,
|
57 |
+
)
|
58 |
+
|
59 |
+
# Get matching photoexp entries for this post_id
|
60 |
+
matching_photoexp_entries = photoexp[photoexp.post_id == random_post_id]
|
61 |
+
|
62 |
+
# Randomly select one edit from the dataset
|
63 |
+
idx = random.randint(0, len(post_edits) - 1)
|
64 |
+
sample = post_edits[idx]
|
65 |
+
|
66 |
+
# Randomly select one entry from the matching photoexp entries
|
67 |
+
if not matching_photoexp_entries.empty:
|
68 |
+
random_photoexp_entry = matching_photoexp_entries.sample(n=1).iloc[0]
|
69 |
+
additional_edited_image = random_photoexp_entry["edited_image"]
|
70 |
+
model_b = random_photoexp_entry.get("model")
|
71 |
+
if model_b is None:
|
72 |
+
model_b = f"REDDIT_{random_photoexp_entry['comment_id']}"
|
73 |
+
else:
|
74 |
+
return None
|
75 |
+
|
76 |
+
return {
|
77 |
+
"post_id": sample["post_id"],
|
78 |
+
"instruction": sample["instruction"],
|
79 |
+
"simplified_instruction": sample["simplified_instruction"],
|
80 |
+
"source_image": sample["source_image"],
|
81 |
+
"edit1_image": sample["edited_image"],
|
82 |
+
"edit1_model": sample["model"],
|
83 |
+
"edit2_image": additional_edited_image,
|
84 |
+
"edit2_model": model_b,
|
85 |
+
}
|
86 |
+
|
87 |
+
|
88 |
+
def save_sample(sample, output_dir):
|
89 |
+
"""Save a sample to disk with all its components"""
|
90 |
+
if sample is None:
|
91 |
+
return False
|
92 |
+
|
93 |
+
# Create directory structure
|
94 |
+
sample_dir = Path(output_dir) / str(sample["post_id"])
|
95 |
+
sample_dir.mkdir(parents=True, exist_ok=True)
|
96 |
+
|
97 |
+
# Save instruction and metadata
|
98 |
+
with open(sample_dir / "metadata.txt", "w") as f:
|
99 |
+
f.write(f"Post ID: {sample['post_id']}\n")
|
100 |
+
f.write(f"Original Instruction: {sample['instruction']}\n")
|
101 |
+
f.write(f"Simplified Instruction: {sample['simplified_instruction']}\n")
|
102 |
+
f.write(f"Edit 1 Model: {sample['edit1_model']}\n")
|
103 |
+
f.write(f"Edit 2 Model: {sample['edit2_model']}\n")
|
104 |
+
|
105 |
+
# Save images
|
106 |
+
success = True
|
107 |
+
success &= download_and_save_image(
|
108 |
+
sample["source_image"], sample_dir / "source.jpg"
|
109 |
+
)
|
110 |
+
success &= download_and_save_image(sample["edit1_image"], sample_dir / "edit1.jpg")
|
111 |
+
success &= download_and_save_image(sample["edit2_image"], sample_dir / "edit2.jpg")
|
112 |
+
|
113 |
+
return success
|
114 |
+
|
115 |
+
|
116 |
+
def main():
|
117 |
+
output_dir = Path("extracted_samples")
|
118 |
+
output_dir.mkdir(exist_ok=True)
|
119 |
+
|
120 |
+
num_samples = 100 # Number of samples to extract
|
121 |
+
successful_samples = 0
|
122 |
+
|
123 |
+
print(f"Extracting {num_samples} samples...")
|
124 |
+
|
125 |
+
while successful_samples < num_samples:
|
126 |
+
sample = get_random_sample()
|
127 |
+
if sample and save_sample(sample, output_dir):
|
128 |
+
successful_samples += 1
|
129 |
+
print(f"Successfully saved sample {successful_samples}/{num_samples}")
|
130 |
+
else:
|
131 |
+
print("Failed to save sample, trying next...")
|
132 |
+
|
133 |
+
print(f"Successfully extracted {successful_samples} samples to {output_dir}")
|
134 |
+
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
main()
|