Spaces:
Sleeping
Sleeping
backup
Browse files
app.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
6 |
+
from peft import PeftModel
|
7 |
+
from huggingface_hub import login
|
8 |
+
import json
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import io
|
11 |
+
import base64
|
12 |
+
|
13 |
+
|
14 |
+
def check_environment():
|
15 |
+
required_vars = ["HF_TOKEN"]
|
16 |
+
missing_vars = [var for var in required_vars if var not in os.environ]
|
17 |
+
|
18 |
+
if missing_vars:
|
19 |
+
raise ValueError(
|
20 |
+
f"Missing required environment variables: {', '.join(missing_vars)}\n"
|
21 |
+
"Please set the HF_TOKEN environment variable with your Hugging Face token"
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
# # Login to Hugging Face
|
26 |
+
# check_environment()
|
27 |
+
# login(token=os.environ["HF_TOKEN"], add_to_git_credential=True)
|
28 |
+
|
29 |
+
# Load model and processor (do this outside the inference function to avoid reloading)
|
30 |
+
# base_model_path = (
|
31 |
+
# "taesiri/BugsBunny-LLama-3.2-11B-Vision-BaseCaptioner-Medium-FullModel"
|
32 |
+
# )
|
33 |
+
|
34 |
+
# processor = AutoProcessor.from_pretrained(base_model_path)
|
35 |
+
# model = MllamaForConditionalGeneration.from_pretrained(
|
36 |
+
# base_model_path,
|
37 |
+
# torch_dtype=torch.bfloat16,
|
38 |
+
# device_map="cuda",
|
39 |
+
# cache_dir="./",
|
40 |
+
# )
|
41 |
+
# #
|
42 |
+
# odel = PeftModel.from_pretrained(model, lora_weights_path)
|
43 |
+
|
44 |
+
|
45 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
46 |
+
import torch
|
47 |
+
|
48 |
+
|
49 |
+
local_model_path = "../merged-llama-3.2-dummy"
|
50 |
+
|
51 |
+
# Load model and processor (do this outside the inference function to avoid reloading)
|
52 |
+
base_model_path = (
|
53 |
+
local_model_path
|
54 |
+
)
|
55 |
+
# lora_weights_path = "taesiri/BugsBunny-LLama-3.2-11B-Vision-Base-Medium-LoRA"
|
56 |
+
|
57 |
+
processor = AutoProcessor.from_pretrained(base_model_path)
|
58 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
59 |
+
base_model_path,
|
60 |
+
torch_dtype=torch.bfloat16,
|
61 |
+
device_map="cuda",
|
62 |
+
cache_dir="./"
|
63 |
+
)
|
64 |
+
|
65 |
+
model.tie_weights()
|
66 |
+
|
67 |
+
|
68 |
+
def create_color_palette_image(colors):
|
69 |
+
if not colors or not isinstance(colors, list):
|
70 |
+
return None
|
71 |
+
|
72 |
+
try:
|
73 |
+
# Validate color format
|
74 |
+
for color in colors:
|
75 |
+
if not isinstance(color, str) or not color.startswith("#"):
|
76 |
+
return None
|
77 |
+
|
78 |
+
# Create figure and axis
|
79 |
+
fig, ax = plt.subplots(figsize=(10, 2))
|
80 |
+
|
81 |
+
# Create rectangles for each color
|
82 |
+
for i, color in enumerate(colors):
|
83 |
+
ax.add_patch(plt.Rectangle((i, 0), 1, 1, facecolor=color))
|
84 |
+
|
85 |
+
# Set the view limits and aspect ratio
|
86 |
+
ax.set_xlim(0, len(colors))
|
87 |
+
ax.set_ylim(0, 1)
|
88 |
+
ax.set_xticks([])
|
89 |
+
ax.set_yticks([])
|
90 |
+
|
91 |
+
return fig # Return the matplotlib figure directly
|
92 |
+
except Exception as e:
|
93 |
+
print(f"Error creating color palette: {e}")
|
94 |
+
return None
|
95 |
+
|
96 |
+
|
97 |
+
def inference(image):
|
98 |
+
if image is None:
|
99 |
+
return ["Please provide an image"] * 4
|
100 |
+
|
101 |
+
if not isinstance(image, Image.Image):
|
102 |
+
try:
|
103 |
+
image = Image.fromarray(image)
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Image conversion error: {e}")
|
106 |
+
return ["Invalid image format"] * 4
|
107 |
+
|
108 |
+
# Prepare input
|
109 |
+
messages = [
|
110 |
+
{
|
111 |
+
"role": "user",
|
112 |
+
"content": [
|
113 |
+
{"type": "image"},
|
114 |
+
{"type": "text", "text": "Analyze this image for fire, smoke, haze, or other related conditions."},
|
115 |
+
],
|
116 |
+
}
|
117 |
+
]
|
118 |
+
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
119 |
+
try:
|
120 |
+
# Move inputs to the correct device
|
121 |
+
inputs = processor(
|
122 |
+
image, input_text, add_special_tokens=False, return_tensors="pt"
|
123 |
+
).to(model.device)
|
124 |
+
|
125 |
+
# Clear CUDA cache after inference
|
126 |
+
with torch.no_grad():
|
127 |
+
output = model.generate(**inputs, max_new_tokens=2048)
|
128 |
+
if torch.cuda.is_available():
|
129 |
+
torch.cuda.empty_cache()
|
130 |
+
|
131 |
+
except Exception as e:
|
132 |
+
print(f"Inference error: {e}")
|
133 |
+
return ["Error during inference"] * 4
|
134 |
+
|
135 |
+
# Decode output
|
136 |
+
result = processor.decode(output[0], skip_special_tokens=True)
|
137 |
+
print("DEBUG: Full decoded output:", result)
|
138 |
+
|
139 |
+
try:
|
140 |
+
json_str = result.strip().split("assistant\n")[1].strip()
|
141 |
+
parsed_json = json.loads(json_str)
|
142 |
+
|
143 |
+
# Create specific JSON subsets for each section
|
144 |
+
fire_analysis = {
|
145 |
+
"predictions": parsed_json.get("predictions", "N/A"),
|
146 |
+
"description": parsed_json.get("description", "No description available"),
|
147 |
+
"confidence_scores": parsed_json.get("confidence_score", {})
|
148 |
+
}
|
149 |
+
|
150 |
+
environment_analysis = {
|
151 |
+
"environmental_factors": parsed_json.get("environmental_factors", {})
|
152 |
+
}
|
153 |
+
|
154 |
+
detection_analysis = {
|
155 |
+
"detections": parsed_json.get("detections", []),
|
156 |
+
"detection_count": len(parsed_json.get("detections", []))
|
157 |
+
}
|
158 |
+
|
159 |
+
report_analysis = {
|
160 |
+
"uncertainty_factors": parsed_json.get("uncertainty_factors", []),
|
161 |
+
"false_positive_indicators": parsed_json.get("false_positive_indicators", [])
|
162 |
+
}
|
163 |
+
|
164 |
+
return (
|
165 |
+
json.dumps(fire_analysis, indent=2),
|
166 |
+
json.dumps(environment_analysis, indent=2),
|
167 |
+
json.dumps(detection_analysis, indent=2),
|
168 |
+
json.dumps(report_analysis, indent=2),
|
169 |
+
json_str,
|
170 |
+
"",
|
171 |
+
"Analysis complete",
|
172 |
+
parsed_json
|
173 |
+
)
|
174 |
+
except Exception as e:
|
175 |
+
print("DEBUG: Error processing response:", e)
|
176 |
+
return (
|
177 |
+
"Error processing response",
|
178 |
+
"",
|
179 |
+
"",
|
180 |
+
"",
|
181 |
+
str(result),
|
182 |
+
str(e),
|
183 |
+
"Error",
|
184 |
+
{}
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
# Update Gradio interface
|
189 |
+
with gr.Blocks() as demo:
|
190 |
+
gr.Markdown("# Fire Detection Demo")
|
191 |
+
|
192 |
+
with gr.Row():
|
193 |
+
with gr.Column(scale=1):
|
194 |
+
image_input = gr.Image(
|
195 |
+
type="pil",
|
196 |
+
label="Upload Image",
|
197 |
+
elem_id="large-image",
|
198 |
+
)
|
199 |
+
submit_btn = gr.Button("Analyze Image", variant="primary")
|
200 |
+
|
201 |
+
# Add examples here
|
202 |
+
gr.Examples(
|
203 |
+
examples=[
|
204 |
+
"examples/Birch MWF014-0001.png",
|
205 |
+
"examples/Birch MWF014-0006.png",
|
206 |
+
"examples/Blackstone PB-0010.png",
|
207 |
+
],
|
208 |
+
inputs=image_input,
|
209 |
+
label="Example Images",
|
210 |
+
examples_per_page=4
|
211 |
+
)
|
212 |
+
|
213 |
+
with gr.Tabs() as tabs:
|
214 |
+
with gr.Tab("Analysis Results"):
|
215 |
+
with gr.Row():
|
216 |
+
with gr.Column():
|
217 |
+
fire_output = gr.JSON(
|
218 |
+
label="Fire Details",
|
219 |
+
lines=4,
|
220 |
+
)
|
221 |
+
with gr.Column():
|
222 |
+
environment_output = gr.JSON(
|
223 |
+
label="Environment Details",
|
224 |
+
lines=4,
|
225 |
+
)
|
226 |
+
with gr.Row():
|
227 |
+
with gr.Column():
|
228 |
+
detection_output = gr.JSON(
|
229 |
+
label="Detection Details",
|
230 |
+
lines=4,
|
231 |
+
)
|
232 |
+
with gr.Column():
|
233 |
+
report_output = gr.JSON(
|
234 |
+
label="Report Details",
|
235 |
+
lines=4,
|
236 |
+
)
|
237 |
+
|
238 |
+
with gr.Tab("JSON Output", id=0):
|
239 |
+
json_output = gr.JSON(
|
240 |
+
label="Detailed JSON Results",
|
241 |
+
)
|
242 |
+
|
243 |
+
with gr.Tab("Raw Output"):
|
244 |
+
raw_output = gr.Textbox(
|
245 |
+
label="Raw JSON Response",
|
246 |
+
lines=10,
|
247 |
+
)
|
248 |
+
|
249 |
+
error_box = gr.Textbox(label="Error Messages", visible=False)
|
250 |
+
status_text = gr.Textbox(label="Status", value="Ready", interactive=False)
|
251 |
+
|
252 |
+
submit_btn.click(
|
253 |
+
fn=inference,
|
254 |
+
inputs=[image_input],
|
255 |
+
outputs=[
|
256 |
+
fire_output,
|
257 |
+
environment_output,
|
258 |
+
detection_output,
|
259 |
+
report_output,
|
260 |
+
raw_output,
|
261 |
+
error_box,
|
262 |
+
status_text,
|
263 |
+
json_output,
|
264 |
+
],
|
265 |
+
)
|
266 |
+
|
267 |
+
demo.launch(share=True)
|