Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ ENTITY_COLORS = {
|
|
12 |
"B-ORG": "#3380FF",
|
13 |
"I-ORG": "#1A66FF",
|
14 |
"O": "#E0E0E0"
|
15 |
-
}
|
16 |
|
17 |
def highlight_entities(text):
|
18 |
"""
|
@@ -41,6 +41,7 @@ def highlight_entities(text):
|
|
41 |
|
42 |
formatted_text += text[last_idx:]
|
43 |
|
|
|
44 |
legend_html = "<div><b>Legend:</b><br>"
|
45 |
for label, color in ENTITY_COLORS.items():
|
46 |
legend_html += f'<span style="background-color:{color}; padding:2px 5px; border-radius:5px; margin-right:5px;">{label}</span>'
|
@@ -48,14 +49,25 @@ def highlight_entities(text):
|
|
48 |
|
49 |
return legend_html + formatted_text
|
50 |
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
grn = gr.Interface(
|
54 |
fn=highlight_entities,
|
55 |
-
inputs=gr.Textbox(label="Enter Spanish Text"
|
56 |
outputs=gr.HTML(label="NER Highlighted Text"),
|
57 |
title="Spanish Named Entity Recognition",
|
58 |
description="This interactive demo performs Named Entity Recognition (NER) on Spanish text. Recognized entities such as persons, locations, and organizations are highlighted in distinct colors for better readability. A legend is provided to help interpret the color coding.",
|
|
|
|
|
59 |
)
|
60 |
|
61 |
grn.launch()
|
|
|
12 |
"B-ORG": "#3380FF",
|
13 |
"I-ORG": "#1A66FF",
|
14 |
"O": "#E0E0E0"
|
15 |
+
}
|
16 |
|
17 |
def highlight_entities(text):
|
18 |
"""
|
|
|
41 |
|
42 |
formatted_text += text[last_idx:]
|
43 |
|
44 |
+
# Generate legend
|
45 |
legend_html = "<div><b>Legend:</b><br>"
|
46 |
for label, color in ENTITY_COLORS.items():
|
47 |
legend_html += f'<span style="background-color:{color}; padding:2px 5px; border-radius:5px; margin-right:5px;">{label}</span>'
|
|
|
49 |
|
50 |
return legend_html + formatted_text
|
51 |
|
52 |
+
example_sentences = [
|
53 |
+
"Elon Musk vive en Estados Unidos y es due帽o de SpaceX, Tesla y Starlink.",
|
54 |
+
"Lionel Messi juega para el Inter Miami y ha ganado m煤ltiples Bal贸n de Oro.",
|
55 |
+
"Amazon es una de las empresas tecnol贸gicas m谩s grandes con sede en Seattle, EE.UU.",
|
56 |
+
"Madrid es la capital de Espa帽a y alberga el famoso museo del Prado.",
|
57 |
+
"Shakira naci贸 en Colombia y es una de las artistas m谩s reconocidas a nivel mundial."
|
58 |
+
]
|
59 |
+
|
60 |
+
def example_selector(example):
|
61 |
+
return highlight_entities(example)
|
62 |
|
63 |
grn = gr.Interface(
|
64 |
fn=highlight_entities,
|
65 |
+
inputs=gr.Textbox(label="Enter Spanish Text"),
|
66 |
outputs=gr.HTML(label="NER Highlighted Text"),
|
67 |
title="Spanish Named Entity Recognition",
|
68 |
description="This interactive demo performs Named Entity Recognition (NER) on Spanish text. Recognized entities such as persons, locations, and organizations are highlighted in distinct colors for better readability. A legend is provided to help interpret the color coding.",
|
69 |
+
examples=example_sentences,
|
70 |
+
allow_flagging="never"
|
71 |
)
|
72 |
|
73 |
grn.launch()
|