Spaces:
Sleeping
Sleeping
Commit
·
22875cb
1
Parent(s):
22bd812
add extras
Browse files- absa_evaluator.py +1 -1
- app.py +6 -0
- preprocessing.py +115 -0
absa_evaluator.py
CHANGED
@@ -4,7 +4,7 @@ import evaluate
|
|
4 |
from datasets import Features, Sequence, Value
|
5 |
from sklearn.metrics import accuracy_score
|
6 |
|
7 |
-
from
|
8 |
|
9 |
_CITATION = """
|
10 |
"""
|
|
|
4 |
from datasets import Features, Sequence, Value
|
5 |
from sklearn.metrics import accuracy_score
|
6 |
|
7 |
+
from preprocessing import absa_term_preprocess
|
8 |
|
9 |
_CITATION = """
|
10 |
"""
|
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("absa_evaluator")
|
6 |
+
launch_gradio_widget(module)
|
preprocessing.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import chain
|
2 |
+
from random import choice
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple
|
4 |
+
|
5 |
+
from datasets import Dataset
|
6 |
+
|
7 |
+
|
8 |
+
def adjust_predictions(refs, preds, choices):
|
9 |
+
"""Adjust predictions to match the length of references with either a special token or random choice."""
|
10 |
+
adjusted_preds = []
|
11 |
+
for ref, pred in zip(refs, preds):
|
12 |
+
if len(pred) < len(ref):
|
13 |
+
missing_count = len(ref) - len(pred)
|
14 |
+
pred.extend([choice(choices) for _ in range(missing_count)])
|
15 |
+
adjusted_preds.append(pred)
|
16 |
+
return adjusted_preds
|
17 |
+
|
18 |
+
|
19 |
+
def extract_aspects(data, specific_key, specific_val):
|
20 |
+
"""Extracts and returns a list of specified aspect details from the nested 'aspects' data."""
|
21 |
+
return [item[specific_key][specific_val] for item in data]
|
22 |
+
|
23 |
+
|
24 |
+
def absa_term_preprocess(references, predictions, subtask_key, subtask_value):
|
25 |
+
"""
|
26 |
+
Preprocess the terms and polarities for aspect-based sentiment analysis.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
references (List[Dict]): A list of dictionaries containing the actual terms and polarities under 'aspects'.
|
30 |
+
predictions (List[Dict]): A list of dictionaries containing predicted aspect categories to terms and their sentiments.
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
Tuple[List[str], List[str], List[str], List[str]]: A tuple containing lists of true aspect terms,
|
34 |
+
adjusted predicted aspect terms, true polarities, and adjusted predicted polarities.
|
35 |
+
"""
|
36 |
+
|
37 |
+
# Extract aspect terms and polarities
|
38 |
+
truth_aspect_terms = extract_aspects(references, subtask_key, subtask_value)
|
39 |
+
pred_aspect_terms = extract_aspects(predictions, subtask_key, subtask_value)
|
40 |
+
truth_polarities = extract_aspects(references, subtask_key, "polarity")
|
41 |
+
pred_polarities = extract_aspects(predictions, subtask_key, "polarity")
|
42 |
+
|
43 |
+
# Define adjustment parameters
|
44 |
+
special_token = "NONE" # For missing aspect terms
|
45 |
+
sentiment_choices = [
|
46 |
+
"positive",
|
47 |
+
"negative",
|
48 |
+
"neutral",
|
49 |
+
"conflict",
|
50 |
+
] # For missing polarities
|
51 |
+
|
52 |
+
# Adjust the predictions to match the length of references
|
53 |
+
adjusted_pred_terms = adjust_predictions(
|
54 |
+
truth_aspect_terms, pred_aspect_terms, [special_token]
|
55 |
+
)
|
56 |
+
adjusted_pred_polarities = adjust_predictions(
|
57 |
+
truth_polarities, pred_polarities, sentiment_choices
|
58 |
+
)
|
59 |
+
|
60 |
+
return (
|
61 |
+
flatten_list(truth_aspect_terms),
|
62 |
+
flatten_list(adjusted_pred_terms),
|
63 |
+
flatten_list(truth_polarities),
|
64 |
+
flatten_list(adjusted_pred_polarities),
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
def flatten_list(nested_list):
|
69 |
+
"""Flatten a nested list into a single-level list."""
|
70 |
+
return list(chain.from_iterable(nested_list))
|
71 |
+
|
72 |
+
|
73 |
+
def extract_pred_terms(
|
74 |
+
all_predictions: List[Dict[str, Dict[str, str]]]
|
75 |
+
) -> List[List]:
|
76 |
+
"""Extract and organize predicted terms from the sentiment analysis results."""
|
77 |
+
pred_aspect_terms = []
|
78 |
+
for pred in all_predictions:
|
79 |
+
terms = [term for cat in pred.values() for term in cat.keys()]
|
80 |
+
pred_aspect_terms.append(terms)
|
81 |
+
return pred_aspect_terms
|
82 |
+
|
83 |
+
|
84 |
+
def merge_aspects_and_categories(aspects, categories):
|
85 |
+
result = []
|
86 |
+
|
87 |
+
# Assuming both lists are of the same length and corresponding indices match
|
88 |
+
for aspect, category in zip(aspects, categories):
|
89 |
+
combined_entry = {
|
90 |
+
"aspects": {"term": [], "polarity": []},
|
91 |
+
"category": {"category": [], "polarity": []},
|
92 |
+
}
|
93 |
+
|
94 |
+
# Process aspect entries
|
95 |
+
for cat_key, terms_dict in aspect.items():
|
96 |
+
for term, polarity in terms_dict.items():
|
97 |
+
combined_entry["aspects"]["term"].append(term)
|
98 |
+
combined_entry["aspects"]["polarity"].append(polarity)
|
99 |
+
|
100 |
+
# Add category details based on the aspect's key if available in categories
|
101 |
+
if cat_key in category:
|
102 |
+
combined_entry["category"]["category"].append(cat_key)
|
103 |
+
combined_entry["category"]["polarity"].append(
|
104 |
+
category[cat_key]
|
105 |
+
)
|
106 |
+
|
107 |
+
# Ensure all keys in category are accounted for
|
108 |
+
for cat_key, polarity in category.items():
|
109 |
+
if cat_key not in combined_entry["category"]["category"]:
|
110 |
+
combined_entry["category"]["category"].append(cat_key)
|
111 |
+
combined_entry["category"]["polarity"].append(polarity)
|
112 |
+
|
113 |
+
result.append(combined_entry)
|
114 |
+
|
115 |
+
return result
|