Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load fine-tuned model from Hugging Face
|
6 |
+
model_name = "syedmoinms/MoinRomanticBot" # ✅ Tumhara sahi model path
|
7 |
+
|
8 |
+
try:
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
11 |
+
except Exception as e:
|
12 |
+
print(f"❌ Error loading model: {e}")
|
13 |
+
exit()
|
14 |
+
|
15 |
+
# Function to generate response
|
16 |
+
def chatbot(input_text):
|
17 |
+
inputs = tokenizer(input_text, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
|
19 |
+
with torch.no_grad():
|
20 |
+
outputs = model.generate(**inputs, max_length=150)
|
21 |
+
|
22 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
return response
|
25 |
+
|
26 |
+
# Gradio interface
|
27 |
+
iface = gr.Interface(fn=chatbot, inputs="text", outputs="text", title="Moin Romantic Bot")
|
28 |
+
|
29 |
+
# Launch app
|
30 |
+
if __name__ == "__main__":
|
31 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|