Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from ultralytics import YOLO
|
7 |
+
|
8 |
+
# Load YOLO model
|
9 |
+
model = YOLO("best.pt").to("cpu")
|
10 |
+
|
11 |
+
def detect_and_crop(image):
|
12 |
+
"""Detect objects using YOLO and crop them from the image."""
|
13 |
+
image_np = np.array(image)
|
14 |
+
results = model(image_np, conf=0.85, device='cpu')
|
15 |
+
|
16 |
+
cropped_images = {}
|
17 |
+
for result in results:
|
18 |
+
for box in result.boxes:
|
19 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
20 |
+
class_name = model.names[int(box.cls[0])]
|
21 |
+
cropped = image_np[y1:y2, x1:x2]
|
22 |
+
cropped_images[class_name] = Image.fromarray(cropped)
|
23 |
+
|
24 |
+
return cropped_images
|
25 |
+
|
26 |
+
def predict(image):
|
27 |
+
"""Process image: detect objects and crop them."""
|
28 |
+
cropped_images = detect_and_crop(image)
|
29 |
+
return list(cropped_images.values()) if cropped_images else image
|
30 |
+
|
31 |
+
# Gradio interface
|
32 |
+
iface = gr.Interface(
|
33 |
+
fn=predict,
|
34 |
+
inputs="image",
|
35 |
+
outputs="image",
|
36 |
+
title="License Field Detection & Cropping"
|
37 |
+
)
|
38 |
+
|
39 |
+
iface.launch()
|