Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
from ultralytics import YOLO
|
7 |
+
|
8 |
+
# Load YOLOv11 Model
|
9 |
+
model_path = "best.pt"
|
10 |
+
model = YOLO(model_path)
|
11 |
+
|
12 |
+
def predict(image):
|
13 |
+
image = np.array(image)
|
14 |
+
results = model(image)
|
15 |
+
|
16 |
+
# Draw bounding boxes
|
17 |
+
for result in results:
|
18 |
+
for box in result.boxes:
|
19 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
20 |
+
conf = box.conf[0]
|
21 |
+
cls = int(box.cls[0])
|
22 |
+
label = f"{model.names[cls]} {conf:.2f}"
|
23 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
24 |
+
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
25 |
+
|
26 |
+
return Image.fromarray(image)
|
27 |
+
|
28 |
+
# Gradio Interface
|
29 |
+
iface = gr.Interface(fn=predict, inputs="image", outputs="image", title="YOLOv11 Object Detection")
|
30 |
+
iface.launch()
|