Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
import cv2
|
4 |
-
import os
|
5 |
import numpy as np
|
6 |
from PIL import Image, ImageEnhance
|
7 |
from ultralytics import YOLO
|
8 |
-
from decord import VideoReader, cpu
|
9 |
from torchvision.transforms.functional import InterpolationMode
|
|
|
10 |
from transformers import AutoModel, AutoTokenizer
|
11 |
-
|
12 |
-
from frontPrompt import main as main_f
|
13 |
-
import sentencepiece as spm
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
18 |
cache_folder = "./.cache"
|
19 |
-
|
20 |
-
# Load the
|
21 |
model = AutoModel.from_pretrained(
|
22 |
path,
|
23 |
cache_dir=cache_folder,
|
24 |
-
torch_dtype=torch.
|
25 |
-
# load_in_8bit=True,
|
26 |
-
low_cpu_mem_usage=True,
|
27 |
-
use_flash_attn=True,
|
28 |
trust_remote_code=True
|
29 |
-
).eval().cpu
|
30 |
|
31 |
tokenizer = AutoTokenizer.from_pretrained(
|
32 |
path,
|
@@ -36,36 +39,36 @@ tokenizer = AutoTokenizer.from_pretrained(
|
|
36 |
)
|
37 |
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
# Apply enhancements
|
47 |
-
image = ImageEnhance.Sharpness(image).enhance(2.0) # Increase sharpness
|
48 |
-
image = ImageEnhance.Contrast(image).enhance(1.5) # Increase contrast
|
49 |
-
image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness
|
50 |
-
|
51 |
-
# Convert to tensor without resizing
|
52 |
-
# image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0 # Shape: [C, H, W]
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
return image
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
def imageRotation(image):
|
61 |
-
|
|
|
|
|
62 |
return image
|
63 |
|
64 |
-
|
65 |
def detect_document(image):
|
66 |
-
"""
|
67 |
-
|
68 |
-
results = modelY(
|
69 |
|
70 |
detected_classes = set()
|
71 |
labels = []
|
@@ -83,86 +86,88 @@ def detect_document(image):
|
|
83 |
labels.append(label)
|
84 |
bounding_boxes.append((x1, y1, x2, y2, class_name, conf))
|
85 |
|
86 |
-
|
87 |
-
cv2.
|
88 |
-
|
89 |
|
90 |
possible_classes = {"front", "back"}
|
91 |
missing_classes = possible_classes - detected_classes
|
92 |
if missing_classes:
|
93 |
labels.append(f"Missing: {', '.join(missing_classes)}")
|
94 |
|
95 |
-
return Image.fromarray(
|
96 |
-
|
97 |
|
98 |
def crop_image(image, bounding_boxes):
|
99 |
-
"""
|
100 |
-
image = ensure_numpy(image) # Ensure image is NumPy format
|
101 |
cropped_images = {}
|
102 |
-
|
103 |
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
110 |
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
|
|
|
|
|
|
|
|
113 |
|
114 |
-
def vision_ai_api(image, doc_type):
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
def ensure_numpy(image):
|
124 |
-
"""Ensure image is a valid NumPy array."""
|
125 |
-
if isinstance(image, torch.Tensor):
|
126 |
-
# Convert PyTorch tensor to NumPy array
|
127 |
-
image = image.permute(1, 2, 0).cpu().numpy()
|
128 |
-
elif isinstance(image, Image.Image):
|
129 |
-
# Convert PIL image to NumPy array
|
130 |
-
image = np.array(image)
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
|
136 |
-
#
|
137 |
-
|
|
|
|
|
138 |
|
|
|
|
|
|
|
|
|
|
|
139 |
def predict(image):
|
140 |
-
"""Pipeline: Preprocess
|
141 |
-
processed_image = preprocessing(image)
|
142 |
-
rotated_image =
|
143 |
detected_image, labels, bounding_boxes = detect_document(rotated_image)
|
144 |
-
|
145 |
-
if not bounding_boxes:
|
146 |
-
return detected_image, labels, {"error": "No document detected!"}
|
147 |
-
|
148 |
cropped_images = crop_image(rotated_image, bounding_boxes)
|
149 |
|
150 |
-
|
151 |
-
front_result = back_result = None
|
152 |
if "front" in cropped_images:
|
153 |
front_result = vision_ai_api(cropped_images["front"], "front")
|
154 |
if "back" in cropped_images:
|
155 |
back_result = vision_ai_api(cropped_images["back"], "back")
|
156 |
|
157 |
-
api_results = {
|
158 |
-
|
159 |
-
|
160 |
-
}
|
161 |
-
|
162 |
-
return detected_image, labels, api_results
|
163 |
-
|
164 |
-
|
165 |
|
|
|
|
|
|
|
166 |
iface = gr.Interface(
|
167 |
fn=predict,
|
168 |
inputs="image",
|
@@ -170,4 +175,4 @@ iface = gr.Interface(
|
|
170 |
title="License Field Detection (Front & Back Card)"
|
171 |
)
|
172 |
|
173 |
-
iface.launch()
|
|
|
1 |
+
import os
|
2 |
+
# Set up caching for Hugging Face models
|
3 |
+
os.environ["TRANSFORMERS_CACHE"] = "./.cache"
|
4 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Disable GPU usage
|
5 |
+
|
6 |
import gradio as gr
|
7 |
import torch
|
8 |
import cv2
|
|
|
9 |
import numpy as np
|
10 |
from PIL import Image, ImageEnhance
|
11 |
from ultralytics import YOLO
|
|
|
12 |
from torchvision.transforms.functional import InterpolationMode
|
13 |
+
import torchvision.transforms as T
|
14 |
from transformers import AutoModel, AutoTokenizer
|
15 |
+
import gc
|
|
|
|
|
16 |
|
17 |
+
# Import prompts from prompts.py
|
18 |
+
from prompts import front as front_prompt, back as back_prompt
|
19 |
+
|
20 |
+
# ---------------------------
|
21 |
+
# HUGGING FACE MODEL SETUP (CPU)
|
22 |
+
# ---------------------------
|
23 |
+
path = "OpenGVLab/InternVL2_5-1B"
|
24 |
cache_folder = "./.cache"
|
25 |
+
|
26 |
+
# Load the Vision AI model and tokenizer globally.
|
27 |
model = AutoModel.from_pretrained(
|
28 |
path,
|
29 |
cache_dir=cache_folder,
|
30 |
+
torch_dtype=torch.float32,
|
|
|
|
|
|
|
31 |
trust_remote_code=True
|
32 |
+
).eval().to("cpu")
|
33 |
|
34 |
tokenizer = AutoTokenizer.from_pretrained(
|
35 |
path,
|
|
|
39 |
)
|
40 |
|
41 |
|
42 |
+
# ---------------------------
|
43 |
+
# YOLO MODEL INITIALIZATION
|
44 |
+
# ---------------------------
|
45 |
+
model_path = "best.pt"
|
46 |
+
modelY = YOLO(model_path)
|
47 |
+
modelY.to('cpu') # Explicitly move model to CPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
def preprocessing(image):
|
50 |
+
"""Apply enhancement filters and resize."""
|
51 |
+
image = Image.fromarray(np.array(image))
|
52 |
+
image = ImageEnhance.Sharpness(image).enhance(2.0) # Increase sharpness
|
53 |
+
image = ImageEnhance.Contrast(image).enhance(1.5) # Increase contrast
|
54 |
+
image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness
|
55 |
+
|
56 |
+
width = 448
|
57 |
+
aspect_ratio = image.height / image.width
|
58 |
+
height = int(width * aspect_ratio)
|
59 |
+
image = image.resize((width, height))
|
60 |
return image
|
61 |
|
|
|
|
|
|
|
|
|
62 |
def imageRotation(image):
|
63 |
+
"""Rotate image if height exceeds width."""
|
64 |
+
if image.height > image.width:
|
65 |
+
return image.rotate(90, expand=True)
|
66 |
return image
|
67 |
|
|
|
68 |
def detect_document(image):
|
69 |
+
"""Detect front/back of the document using YOLO."""
|
70 |
+
image_np = np.array(image)
|
71 |
+
results = modelY(image_np, conf=0.85, device='cpu')
|
72 |
|
73 |
detected_classes = set()
|
74 |
labels = []
|
|
|
86 |
labels.append(label)
|
87 |
bounding_boxes.append((x1, y1, x2, y2, class_name, conf))
|
88 |
|
89 |
+
cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
90 |
+
cv2.putText(image_np, label, (x1, y1 - 10),
|
91 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
92 |
|
93 |
possible_classes = {"front", "back"}
|
94 |
missing_classes = possible_classes - detected_classes
|
95 |
if missing_classes:
|
96 |
labels.append(f"Missing: {', '.join(missing_classes)}")
|
97 |
|
98 |
+
return Image.fromarray(image_np), labels, bounding_boxes
|
|
|
99 |
|
100 |
def crop_image(image, bounding_boxes):
|
101 |
+
"""Crop detected bounding boxes from the image."""
|
|
|
102 |
cropped_images = {}
|
103 |
+
image_np = np.array(image)
|
104 |
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
|
105 |
+
cropped = image_np[y1:y2, x1:x2]
|
106 |
+
cropped_images[class_name] = Image.fromarray(cropped)
|
107 |
+
return cropped_images
|
108 |
|
109 |
+
# ---------------------------
|
110 |
+
# VISION AI API FUNCTIONS
|
111 |
+
# ---------------------------
|
112 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
113 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
114 |
|
115 |
+
def build_transform(input_size):
|
116 |
+
transform = T.Compose([
|
117 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
118 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
119 |
+
T.ToTensor(),
|
120 |
+
T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
|
121 |
+
])
|
122 |
+
return transform
|
123 |
|
124 |
+
def load_image(image_file):
|
125 |
+
transform = build_transform(input_size=448)
|
126 |
+
pixel_values = transform(image_file).unsqueeze(0) # Add batch dimension
|
127 |
+
return pixel_values
|
128 |
|
|
|
129 |
|
130 |
+
def vision_ai_api(image, doc_type):
|
131 |
+
"""Run the model using a dynamic prompt based on detected doc type."""
|
132 |
+
pixel_values = load_image(image).to(torch.float32).to("cpu")
|
133 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
134 |
+
|
135 |
+
question = front_prompt if doc_type == "front" else back_prompt if doc_type == "back" else "Please provide document details."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
print("Before requesting model...")
|
138 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config)
|
139 |
+
print("After requesting model...", response)
|
140 |
|
141 |
+
# Clear memory
|
142 |
+
del pixel_values
|
143 |
+
gc.collect() # Force garbage collection
|
144 |
+
torch.cuda.empty_cache()
|
145 |
|
146 |
+
return f'User: {question}\nAssistant: {response}'
|
147 |
+
|
148 |
+
# ---------------------------
|
149 |
+
# PREDICTION PIPELINE
|
150 |
+
# ---------------------------
|
151 |
def predict(image):
|
152 |
+
"""Pipeline: Preprocess → Detect → Crop → Vision AI API call."""
|
153 |
+
processed_image = preprocessing(image)
|
154 |
+
rotated_image = imageRotation(processed_image)
|
155 |
detected_image, labels, bounding_boxes = detect_document(rotated_image)
|
|
|
|
|
|
|
|
|
156 |
cropped_images = crop_image(rotated_image, bounding_boxes)
|
157 |
|
158 |
+
front_result, back_result = None, None
|
|
|
159 |
if "front" in cropped_images:
|
160 |
front_result = vision_ai_api(cropped_images["front"], "front")
|
161 |
if "back" in cropped_images:
|
162 |
back_result = vision_ai_api(cropped_images["back"], "back")
|
163 |
|
164 |
+
api_results = {"front": front_result, "back": back_result}
|
165 |
+
single_image = cropped_images.get("front") or cropped_images.get("back") or detected_image
|
166 |
+
return single_image, labels, api_results
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
+
# ---------------------------
|
169 |
+
# GRADIO INTERFACE LAUNCH
|
170 |
+
# ---------------------------
|
171 |
iface = gr.Interface(
|
172 |
fn=predict,
|
173 |
inputs="image",
|
|
|
175 |
title="License Field Detection (Front & Back Card)"
|
176 |
)
|
177 |
|
178 |
+
iface.launch()
|