syedfaisalabrar's picture
Update app.py
f9de43f verified
raw
history blame
4.08 kB
import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
# Load YOLOv11 Model
model_path = "best.pt"
model = YOLO(model_path)
# ---------------- Preprocessing Function ---------------- #
def preprocessing(image):
"""Apply three enhancement filters, including brightness reduction, and resize."""
image = Image.fromarray(np.array(image))
# Apply enhancements
image = ImageEnhance.Sharpness(image).enhance(2.0) # Increase sharpness
image = ImageEnhance.Contrast(image).enhance(1.5) # Increase contrast
image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness
# Resize image to 800px width while maintaining aspect ratio
width = 800
aspect_ratio = image.height / image.width
height = int(width * aspect_ratio)
image = image.resize((width, height))
return image
# ---------------- Dummy Image Rotation Function ---------------- #
def imageRotation(image):
"""Dummy function for image rotation."""
return image
# ---------------- Document Detection Function ---------------- #
def detect_document(image):
"""Detects front and back of the document using YOLO."""
image = np.array(image)
results = model(image, conf=0.85)
detected_classes = set()
labels = []
bounding_boxes = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
class_name = model.names[cls]
detected_classes.add(class_name)
label = f"{class_name} {conf:.2f}"
labels.append(label)
bounding_boxes.append((x1, y1, x2, y2, class_name, conf)) # Store bounding box with class and confidence
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
possible_classes = {"front", "back"}
missing_classes = possible_classes - detected_classes
if missing_classes:
labels.append(f"Missing: {', '.join(missing_classes)}")
return Image.fromarray(image), labels, bounding_boxes
# ---------------- Cropping Function ---------------- #
def crop_image(image, bounding_boxes):
"""Crops detected bounding boxes from the image."""
cropped_images = {}
image = np.array(image)
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
cropped = image[y1:y2, x1:x2]
cropped_images[class_name] = Image.fromarray(cropped)
return cropped_images
# ---------------- Vision AI API Call (Dummy) ---------------- #
def vision_ai_api(image, doc_type):
"""Dummy API call for Vision AI, returns a fake JSON response."""
return {
"document_type": doc_type,
"extracted_text": "Dummy OCR result for " + doc_type,
"confidence": 0.99
}
# ---------------- Prediction Function ---------------- #
def predict(image):
"""Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
processed_image = preprocessing(image)
rotated_image = imageRotation(processed_image) # Placeholder for rotation
detected_image, labels, bounding_boxes = detect_document(rotated_image)
cropped_images = crop_image(rotated_image, bounding_boxes)
# Call Vision AI separately for front and back if detected
front_result, back_result = None, None
if "front" in cropped_images:
front_result = vision_ai_api(cropped_images["front"], "front")
if "back" in cropped_images:
back_result = vision_ai_api(cropped_images["back"], "back")
# Combine API results into a single response
api_results = {
"front": front_result,
"back": back_result
}
return detected_image, labels, api_results
# ---------------- Gradio Interface ---------------- #
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text", "json"],
title="License Field Detection (Front & Back Card)"
)
iface.launch()