syedfaisalabrar's picture
Update app.py
d3fed67 verified
raw
history blame
4.94 kB
import gradio as gr
import torch
import cv2
import os
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO
from decord import VideoReader, cpu
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
from backPrompt import main as main_b
from frontPrompt import main as main_f
import sentencepiece as spm
model_path = "best.pt"
modelY = YOLO(model_path)
os.environ["TRANSFORMERS_CACHE"] = "./.cache"
cache_folder = "./.cache"
path = "OpenGVLab/InternVL2_5-2B"
# Load the Hugging Face model and tokenizer globally (downloaded only once)
model = AutoModel.from_pretrained(
path,
cache_dir=cache_folder,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
# load_in_8bit=True,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True
).eval().cpu()
tokenizer = AutoTokenizer.from_pretrained(
path,
cache_dir=cache_folder,
trust_remote_code=True,
use_fast=False
)
def preprocessing(image):
"""Apply three enhancement filters without resizing or cropping."""
# Ensure the image is a PIL Image
if not isinstance(image, Image.Image):
image = Image.fromarray(np.array(image))
# Apply enhancements
image = ImageEnhance.Sharpness(image).enhance(2.0) # Increase sharpness
image = ImageEnhance.Contrast(image).enhance(1.5) # Increase contrast
image = ImageEnhance.Brightness(image).enhance(0.8) # Reduce brightness
# Convert to tensor without resizing
image_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).float() / 255.0 # Shape: [C, H, W]
return image_tensor
def imageRotation(image):
return image
def detect_document(image):
"""Detects front and back of the document using YOLO."""
image = np.array(image)
results = modelY(image, conf=0.85)
detected_classes = set()
labels = []
bounding_boxes = []
for result in results:
for box in result.boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0])
conf = box.conf[0]
cls = int(box.cls[0])
class_name = modelY.names[cls]
detected_classes.add(class_name)
label = f"{class_name} {conf:.2f}"
labels.append(label)
bounding_boxes.append((x1, y1, x2, y2, class_name, conf)) # Store bounding box with class and confidence
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
possible_classes = {"front", "back"}
missing_classes = possible_classes - detected_classes
if missing_classes:
labels.append(f"Missing: {', '.join(missing_classes)}")
return Image.fromarray(image), labels, bounding_boxes
def crop_image(image, bounding_boxes):
"""Crops detected bounding boxes from the image."""
cropped_images = {}
image = np.array(image)
for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
cropped = image[y1:y2, x1:x2]
cropped_images[class_name] = Image.fromarray(cropped)
return cropped_images
def vision_ai_api(image, doc_type):
if doc_type == "front":
results = main_f(image,model,tokenizer)
if doc_type == "back":
results = main_b(image,model,tokenizer)
return results
def ensure_numpy(image):
"""Ensure image is a valid NumPy array."""
if isinstance(image, torch.Tensor):
# Convert PyTorch tensor to NumPy array
image = image.permute(1, 2, 0).cpu().numpy()
elif isinstance(image, Image.Image):
# Convert PIL image to NumPy array
image = np.array(image)
if len(image.shape) == 2:
# Convert grayscale to 3-channel image
image = np.stack([image] * 3, axis=-1)
return image
def predict(image):
"""Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
processed_image = preprocessing(image)
rotated_image = ensure_numpy(processed_image)
detected_image, labels, bounding_boxes = detect_document(rotated_image)
cropped_images = crop_image(rotated_image, bounding_boxes)
# Call Vision AI separately for front and back if detected
front_result, back_result = None, None
if "front" in cropped_images:
front_result = vision_ai_api(cropped_images["front"], "front")
if "back" in cropped_images:
back_result = vision_ai_api(cropped_images["back"], "back")
api_results = {
"front": front_result,
"back": back_result
}
single_image = cropped_images.get("front") or cropped_images.get("back") or detected_image
return single_image, labels, api_results
iface = gr.Interface(
fn=predict,
inputs="image",
outputs=["image", "text", "json"],
title="License Field Detection (Front & Back Card)"
)
iface.launch()