|
import gradio as gr |
|
import torch |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
from ultralytics import YOLO |
|
|
|
|
|
model_path = "best.pt" |
|
model = YOLO(model_path) |
|
|
|
def predict(image): |
|
image = np.array(image) |
|
results = model(image, conf=0.85) |
|
|
|
detected_classes = set() |
|
labels = [] |
|
|
|
|
|
for result in results: |
|
for box in result.boxes: |
|
x1, y1, x2, y2 = map(int, box.xyxy[0]) |
|
conf = box.conf[0] |
|
cls = int(box.cls[0]) |
|
class_name = model.names[cls] |
|
|
|
detected_classes.add(class_name) |
|
label = f"{class_name} {conf:.2f}" |
|
labels.append(label) |
|
|
|
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) |
|
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) |
|
|
|
|
|
possible_classes = {"front", "back"} |
|
|
|
|
|
missing_classes = possible_classes - detected_classes |
|
if missing_classes: |
|
labels.append(f"Missing: {', '.join(missing_classes)}") |
|
|
|
return Image.fromarray(image), labels |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs="image", |
|
outputs=["image", "text"], |
|
title="YOLOv11 Object Detection (Front & Back Card)" |
|
) |
|
|
|
iface.launch() |
|
|