File size: 8,855 Bytes
2ed083e c54ac12 d77e253 9fa1aca c54ac12 2ed083e 359b1b4 975e1bd 2ed083e f626cd1 2ed083e f626cd1 2ed083e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def preprocess_for_model(image):
"""Prepares an image for the OpenGVLab model."""
# Define the necessary image transformations
transform = T.Compose([
T.ToTensor(), # Convert to PyTorch Tensor
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize
])
image = transform(image).unsqueeze(0) # Add batch dimension
return image
def load_image(image_file):
transform = build_transform(input_size=800)
pixel_values = preprocess_for_model(image_file)
return pixel_values
def main(image_path,model,tokenizer):
pixel_values = load_image(image_path).to(torch.float32).to("cpu")
generation_config = dict(max_new_tokens=1024, do_sample=True)
question = """<image>\n**Instruction:**
Analyze the image to extract values for the specified keys. Use the detailed descriptions below to determine the correct value for each key. Handle missing or ambiguous data as instructed.
---
### Keys and Descriptions
1. **`surat_tanda_nomor_kendaraan_bermotor`**
- **Extract**: The value of the field labeled as "Surat Tanda Nomor Kendaraan Bermotor" and this is titel.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
2. **`tempat_tanggal`**
- **Extract**: The location and date from the top right corner of the document.
- **Note**: This field does not have a title such as "Tempat - Tanggal."
- **Format**: `"CITY, DD MMM YYYY"` (e.g., `"JAKARTA, 07 DES 2018"`).
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
3. **`no`**
- **Extract**: The value in the "NO" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
4. **`nomor_registrasi`**
- **Extract**: The "NOMOR REGISTRASI" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
5. **`nama_pemilik`**
- **Extract**: The "NAMA PEMILIK" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
6. **`alamat`**
- **Extract**: The "ALAMAT" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
7. **`merk`**
- **Extract**: The "MERK" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
8. **`type`**
- **Extract**: The "TYPE" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
9. **`jenis`**
- **Extract**: The "JENIS" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
10. **`model`**
- **Extract**: The "MODEL" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
11. **`tahun_pembuatan`**
- **Extract**: The "TAHUN PEMBUATAN" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
12. **`isi_silinder_daya_listrik`**
- **Extract**: The "ISI SILINDER / DAYA LISTRIK" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
13. **`nomor_rangka`**
- **Extract**: The "NOMOR RANGKA" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
14. **`nomor_mesin`**
- **Extract**: The "NOMOR MESIN" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
15. **`nik_tdp_nie_kitas_kitap`**
- **Extract**: The "NIK/TDP/NIE/KITAS/KITAP" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
16. **`warna`**
- **Extract**: The "WARNA" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
17. **`bahan_bakar`**
- **Extract**: The "BAHAN BAKAR" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
18. **`warna_tnkb`**
- **Extract**: The "WARNA TNKB" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
19. **`tahun_registrasi`**
- **Extract**: The "TAHUN REGISTRASI" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
20. **`nomor_bpkb`**
- **Extract**: The "NOMOR BPKB" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
21. **`kode_lokasi`**
- **Extract**: The "KODE LOKASI" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
22. **`no_urut_pendaftaran`**
- **Extract**: The "NO URUT PENDAFTARAN" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
23. **`berlaku_sampai`**
- **Extract**: The "BERLAKU SAMPAI" field.
- **If the Field is Absent**: `"null"`
- **If the Field is Present but No Value is Provided**: `"empty"`
24. **`qr_code`**
- **Extract**: The value encoded in the QR code, if present.
- **If No QR Code is Found**: `"null"`
- **If a QR Code is Present but Contains No Data**: `"empty"`
---
### Output Format
```json
{
"surat_tanda_nomor_kendaraan_bermotor": "<value> OR empty OR null",
"tempat_tanggal": "<value> OR empty OR null",
"no": "<value> OR empty OR null",
"nomor_registrasi": "<value> OR empty OR null",
"nama_pemilik": "<value> OR empty OR null",
"alamat": "<value> OR empty OR null",
"merk": "<value> OR empty OR null",
"type": "<value> OR empty OR null",
"jenis": "<value> OR empty OR null",
"model": "<value> OR empty OR null",
"tahun_pembuatan": "<value> OR empty OR null",
"isi_silinder_daya_listrik": "<value> OR empty OR null",
"nomor_rangka": "<value> OR empty OR null",
"nomor_mesin": "<value> OR empty OR null",
"nik_tdp_nie_kitas_kitap": "<value> OR empty OR null",
"warna": "<value> OR empty OR null",
"bahan_bakar": "<value> OR empty OR null",
"warna_tnkb": "<value> OR empty OR null",
"tahun_registrasi": "<value> OR empty OR null",
"nomor_bpkb": "<value> OR empty OR null",
"kode_lokasi": "<value> OR empty OR null",
"no_urut_pendaftaran": "<value> OR empty OR null",
"berlaku_sampai": "<value> OR empty OR null"
"qr_code" : "<value> OR empty OR null"
}
### Reasoning Process
For each key, explain your reasoning:
Indicate whether the field was present.
Justify the extracted value or the use of "null" or "empty" as per the conditions.
Return Output:
Generate a JSON object:
{
"reasoning": "reasoning for each key",
"output JSON": "key-value pairs"
}
---
"""
print("Before requesting model................................................................................")
response = model.chat(tokenizer, pixel_values, question, generation_config)
print("After requesting model................................................................................",response)
return (f'User: {question}\nAssistant: {response}')
|