File size: 3,390 Bytes
4622b44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gradio as gr
import torch
import cv2
import numpy as np
from PIL import Image, ImageEnhance
from ultralytics import YOLO


model_path = "best.pt" 
model = YOLO(model_path)

def preprocessing(image):
    
    image = Image.fromarray(np.array(image))

    image = ImageEnhance.Sharpness(image).enhance(2.0)  
    image = ImageEnhance.Contrast(image).enhance(1.5)   
    image = ImageEnhance.Brightness(image).enhance(0.8) 

   
    width = 800
    aspect_ratio = image.height / image.width
    height = int(width * aspect_ratio)
    image = image.resize((width, height))

    return image


def imageRotation(image):
    """Dummy function for image rotation."""
    return image


def detect_document(image):
    """Detects front and back of the document using YOLO."""
    image = np.array(image)
    results = model(image, conf=0.85)

    detected_classes = set()  
    labels = []
    bounding_boxes = []

    for result in results:
        for box in result.boxes:
            x1, y1, x2, y2 = map(int, box.xyxy[0])
            conf = box.conf[0]
            cls = int(box.cls[0])
            class_name = model.names[cls]

            detected_classes.add(class_name)
            label = f"{class_name} {conf:.2f}"
            labels.append(label)
            bounding_boxes.append((x1, y1, x2, y2, class_name, conf))  # Store bounding box with class and confidence

            cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    possible_classes = {"front", "back"}
    missing_classes = possible_classes - detected_classes
    if missing_classes:
        labels.append(f"Missing: {', '.join(missing_classes)}")

    return Image.fromarray(image), labels, bounding_boxes


def crop_image(image, bounding_boxes):
    """Crops detected bounding boxes from the image."""
    cropped_images = {}
    image = np.array(image)

    for (x1, y1, x2, y2, class_name, conf) in bounding_boxes:
        cropped = image[y1:y2, x1:x2]
        cropped_images[class_name] = Image.fromarray(cropped)

    return cropped_images


def vision_ai_api(image, doc_type):
    """Dummy API call for Vision AI, returns a fake JSON response."""
    return {
        "document_type": doc_type,
        "extracted_text": "Dummy OCR result for " + doc_type,
        "confidence": 0.99
    }

# ---------------- Prediction Function ---------------- #
def predict(image):
    """Pipeline: Preprocess -> Detect -> Crop -> Vision AI API."""
    processed_image = preprocessing(image)
    rotated_image = imageRotation(processed_image)  
    detected_image, labels, bounding_boxes = detect_document(rotated_image)

    cropped_images = crop_image(rotated_image, bounding_boxes)

    # Call Vision AI separately for front and back if detected
    front_result, back_result = None, None
    if "front" in cropped_images:
        front_result = vision_ai_api(cropped_images["front"], "front")
    if "back" in cropped_images:
        back_result = vision_ai_api(cropped_images["back"], "back")


    api_results = {
        "front": front_result,
        "back": back_result
    }

    return detected_image, labels, api_results


iface = gr.Interface(
    fn=predict, 
    inputs="image", 
    outputs=["image", "text", "json"],  
    title="License Field Detection (Front & Back Card)"
)

iface.launch()