Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +62 -39
src/streamlit_app.py
CHANGED
@@ -1,40 +1,63 @@
|
|
1 |
-
import
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
"
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import html
|
|
|
|
|
2 |
import streamlit as st
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import colorsys
|
5 |
+
|
6 |
+
st.set_page_config(layout="wide", page_title="Text Tokenizer")
|
7 |
+
|
8 |
+
def get_random_color(token_id):
|
9 |
+
# Generate a color based on the token id to ensure consistency
|
10 |
+
hue = (hash(str(token_id)) % 1000) / 1000.0
|
11 |
+
return f"hsla({int(hue * 360)}, 70%, 30%, 70%)"
|
12 |
+
|
13 |
+
def load_tokenizer(model_name="Qwen/Qwen2.5-Coder-7B-Instruct"):
|
14 |
+
if 'tokenizer' not in st.session_state:
|
15 |
+
st.session_state.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
16 |
+
return st.session_state.tokenizer
|
17 |
+
|
18 |
+
st.title("Text Tokenizer")
|
19 |
+
selected_model = "Qwen/Qwen2.5-Coder-7B-Instruct"
|
20 |
+
|
21 |
+
# Load tokenizer based on selection
|
22 |
+
try:
|
23 |
+
tokenizer = load_tokenizer(selected_model)
|
24 |
+
st.success(f"Loaded tokenizer: {selected_model}")
|
25 |
+
except Exception as e:
|
26 |
+
st.error(f"Failed to load tokenizer: {e}")
|
27 |
+
st.stop()
|
28 |
+
|
29 |
+
# Input text area
|
30 |
+
input_text = st.text_area("Enter text to tokenize", height=200)
|
31 |
+
|
32 |
+
# Tokenize button
|
33 |
+
if st.button("Tokenize") and input_text:
|
34 |
+
tokens = tokenizer.encode(input_text)
|
35 |
+
st.write(f"Total tokens: {len(tokens)}")
|
36 |
+
|
37 |
+
# Generate colored text visualization
|
38 |
+
result = ""
|
39 |
+
prev_tokens = []
|
40 |
+
prev_string = ""
|
41 |
+
|
42 |
+
for token in tokens:
|
43 |
+
color = get_random_color(token)
|
44 |
+
current_string = tokenizer.decode(prev_tokens + [token])
|
45 |
+
prev_tokens.append(token)
|
46 |
+
current_delta = current_string[len(prev_string):]
|
47 |
+
prev_string = current_string
|
48 |
+
|
49 |
+
current_delta = html.escape(current_delta)
|
50 |
+
current_delta = (current_delta
|
51 |
+
.replace("\n", "↵<br/>")
|
52 |
+
.replace(" ", " ")
|
53 |
+
.replace("\t", " "))
|
54 |
+
|
55 |
+
result += f'<span style="background-color: {color};">{current_delta}</span>'
|
56 |
+
|
57 |
+
st.html(f'<pre style="background-color: #222; padding: 10px; font-family: Courier, monospace;">{result}</pre>')
|
58 |
+
|
59 |
+
# Show raw tokens (optional)
|
60 |
+
with st.expander("View raw tokens"):
|
61 |
+
token_strings = [tokenizer.decode([t]) for t in tokens]
|
62 |
+
for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
|
63 |
+
st.write(f"{i}: Token ID {token_id} → '{token_str}'")
|