Spaces:
Runtime error
Runtime error
Upload run_video_ccip.py
Browse files- run_video_ccip.py +130 -0
run_video_ccip.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
python run_video_ccip.py Beyond_the_Boundary_Videos_sm Beyond_the_Boundary_Videos_sm_named --image_dir named_image_dir
|
3 |
+
|
4 |
+
import pandas as pd
|
5 |
+
import pathlib
|
6 |
+
import json
|
7 |
+
def read_j(x):
|
8 |
+
with open(x, "r") as f:
|
9 |
+
return json.load(f)
|
10 |
+
|
11 |
+
path_s = pd.Series(list(pathlib.Path("Beyond_the_Boundary_Videos_sm_named/").rglob("*.json"))).map(str)
|
12 |
+
df = pd.DataFrame(path_s.head(int(1e10)).map(
|
13 |
+
lambda x: (x, read_j(x))
|
14 |
+
).values.tolist()
|
15 |
+
).explode(1).applymap(
|
16 |
+
lambda x: x["results"] if type(x) == type({}) else x
|
17 |
+
).explode(1)
|
18 |
+
df
|
19 |
+
right_df = pd.json_normalize(df[1])
|
20 |
+
df = pd.concat([df.reset_index().iloc[:, 1:], right_df.reset_index().iloc[:,1:]], axis = 1)
|
21 |
+
df = df[
|
22 |
+
df["prediction"] == "Same"
|
23 |
+
]
|
24 |
+
###df[0].sort_values().drop_duplicates()
|
25 |
+
df
|
26 |
+
'''
|
27 |
+
|
28 |
+
import os
|
29 |
+
import json
|
30 |
+
from tqdm import tqdm
|
31 |
+
from PIL import Image
|
32 |
+
from ccip import _VALID_MODEL_NAMES, _DEFAULT_MODEL_NAMES, ccip_difference, ccip_default_threshold
|
33 |
+
import pathlib
|
34 |
+
import argparse
|
35 |
+
from moviepy.editor import VideoFileClip
|
36 |
+
|
37 |
+
def load_images_from_directory(image_dir):
|
38 |
+
"""
|
39 |
+
从指定目录加载图片,构建字典。
|
40 |
+
键为图片的文件名(不含扩展名),值为图片的 PIL.Image 对象。
|
41 |
+
"""
|
42 |
+
name_image_dict = {}
|
43 |
+
image_paths = list(pathlib.Path(image_dir).rglob("*.png")) + list(pathlib.Path(image_dir).rglob("*.jpg")) + list(pathlib.Path(image_dir).rglob("*.jpeg"))
|
44 |
+
|
45 |
+
for image_path in tqdm(image_paths, desc="Loading images"):
|
46 |
+
image = Image.open(image_path)
|
47 |
+
name = os.path.splitext(os.path.basename(image_path))[0] # 去掉扩展名
|
48 |
+
name_image_dict[name] = image
|
49 |
+
|
50 |
+
return name_image_dict
|
51 |
+
|
52 |
+
def _compare_with_dataset(imagex, model_name, name_image_dict):
|
53 |
+
threshold = ccip_default_threshold(model_name)
|
54 |
+
results = []
|
55 |
+
|
56 |
+
for name, imagey in name_image_dict.items():
|
57 |
+
diff = ccip_difference(imagex, imagey)
|
58 |
+
result = {
|
59 |
+
"difference": diff,
|
60 |
+
"prediction": 'Same' if diff <= threshold else 'Not Same',
|
61 |
+
"name": name
|
62 |
+
}
|
63 |
+
results.append(result)
|
64 |
+
|
65 |
+
# 按照 diff 值进行排序
|
66 |
+
results.sort(key=lambda x: x["difference"])
|
67 |
+
|
68 |
+
return results
|
69 |
+
|
70 |
+
def process_video(video_path, model_name, output_dir, max_frames, name_image_dict):
|
71 |
+
# 打开视频文件
|
72 |
+
clip = VideoFileClip(video_path)
|
73 |
+
duration = clip.duration
|
74 |
+
fps = clip.fps
|
75 |
+
total_frames = int(duration * fps)
|
76 |
+
|
77 |
+
# 计算帧间隔
|
78 |
+
frame_interval = max(1, total_frames // max_frames)
|
79 |
+
|
80 |
+
# 生成输出文件名
|
81 |
+
video_name = os.path.splitext(os.path.basename(video_path))[0]
|
82 |
+
output_file = os.path.join(output_dir, f"{video_name}.json")
|
83 |
+
|
84 |
+
results = []
|
85 |
+
|
86 |
+
# 采样帧并处理
|
87 |
+
for i in tqdm(range(0, total_frames, frame_interval), desc="Processing frames"):
|
88 |
+
frame = clip.get_frame(i / fps)
|
89 |
+
image = Image.fromarray(frame)
|
90 |
+
frame_results = _compare_with_dataset(image, model_name, name_image_dict)
|
91 |
+
results.append({
|
92 |
+
"frame_time": i / fps,
|
93 |
+
"results": frame_results
|
94 |
+
})
|
95 |
+
|
96 |
+
# 保存结果到 JSON 文件
|
97 |
+
with open(output_file, 'w') as f:
|
98 |
+
json.dump(results, f, indent=4)
|
99 |
+
|
100 |
+
def main():
|
101 |
+
parser = argparse.ArgumentParser(description="Compare videos with a dataset and save results as JSON.")
|
102 |
+
parser.add_argument("input_path", type=str, help="Path to the input video or directory containing videos.")
|
103 |
+
parser.add_argument("output_dir", type=str, help="Directory to save the output JSON files.")
|
104 |
+
parser.add_argument("--image_dir", type=str, required=True, help="Directory containing images to compare with.")
|
105 |
+
parser.add_argument("--model", type=str, default=_DEFAULT_MODEL_NAMES, choices=_VALID_MODEL_NAMES, help="Model to use for comparison.")
|
106 |
+
parser.add_argument("--max_frames", type=int, default=3, help="Maximum number of frames to process per video.")
|
107 |
+
|
108 |
+
args = parser.parse_args()
|
109 |
+
|
110 |
+
# 确保输出目录存在
|
111 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
112 |
+
|
113 |
+
# 加载图片数据集
|
114 |
+
name_image_dict = load_images_from_directory(args.image_dir)
|
115 |
+
|
116 |
+
# 判断输入路径是文件还是目录
|
117 |
+
if os.path.isfile(args.input_path):
|
118 |
+
video_paths = [args.input_path]
|
119 |
+
elif os.path.isdir(args.input_path):
|
120 |
+
video_paths = list(pathlib.Path(args.input_path).rglob("*.mp4")) + list(pathlib.Path(args.input_path).rglob("*.avi"))
|
121 |
+
else:
|
122 |
+
raise ValueError("Input path must be a valid file or directory.")
|
123 |
+
video_paths = list(map(str, video_paths))
|
124 |
+
|
125 |
+
# 处理每个视频
|
126 |
+
for video_path in tqdm(video_paths, desc="Processing videos"):
|
127 |
+
process_video(video_path, args.model, args.output_dir, args.max_frames, name_image_dict)
|
128 |
+
|
129 |
+
if __name__ == '__main__':
|
130 |
+
main()
|