Spaces:
Build error
Build error
File size: 5,354 Bytes
cba9821 1f1be9a cba9821 1f1be9a cba9821 6fd739b cba9821 6fd739b 869f8bf 6fd739b d3a0c90 6fd739b cba9821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import chatglm_cpp
import gradio as gr
from pathlib import Path
model_file_path = "chatglm2-ggml-q4_0.bin"
chatglm_llm = chatglm_cpp.Pipeline(Path(model_file_path))
examples = [
"苹果设备购买apple care有什么好处?",
"如何学好历史?",
"如何弘扬中华传统文化?",
"How to promote Chinese traditional culture ?",
"如何进行经济建设?",
"写一段孔子与马克思的对话录。",
]
def process_stream(instruction, temperature, top_p, top_k, max_new_tokens, seed):
if "[SEP]" not in instruction:
streamer = chatglm_llm.generate(prompt=instruction,
temperature=temperature,
top_p=top_p,top_k=top_k,max_length=max_new_tokens,
stream = True
)
else:
history = instruction.split("[SEP]")
streamer = chatglm_llm.chat(
history=history,
temperature=temperature,
top_p=top_p,top_k=top_k,max_length=max_new_tokens,
do_sample=False,
stream = True
)
response = ""
for new_text in streamer:
response += new_text
yield response
with gr.Blocks(
theme=gr.themes.Soft(),
css=".disclaimer {font-variant-caps: all-small-caps;}",
) as demo:
gr.Markdown(
"""<h1><center> ChatGLM2 on CPU in CPP 🐒</center></h1>
This demo uses the [chatglm.cpp](https://github.com/li-plus/chatglm.cpp) library on 2 CPU cores.
"""
)
with gr.Row():
with gr.Column():
with gr.Row():
instruction = gr.Textbox(
placeholder="Enter your question or instruction here",
label="Question/Instruction",
elem_id="q-input",
)
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column():
with gr.Row():
temperature = gr.Slider(
label="Temperature",
value=0.8,
minimum=0.1,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
with gr.Column():
with gr.Row():
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1.0,
step=0.01,
interactive=True,
info=(
"Sample from the smallest possible set of tokens whose cumulative probability "
"exceeds top_p. Set to 1 to disable and sample from all tokens."
),
)
with gr.Column():
with gr.Row():
top_k = gr.Slider(
label="Top-k",
value=40,
minimum=5,
maximum=80,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens — 0 to disable and sample from all tokens.",
)
with gr.Column():
with gr.Row():
max_new_tokens = gr.Slider(
label="Maximum new tokens",
value=256,
minimum=0,
maximum=1024,
step=5,
interactive=True,
info="The maximum number of new tokens to generate",
)
with gr.Column():
with gr.Row():
seed = gr.Number(
label="Seed",
value=42,
interactive=True,
info="The seed to use for the generation",
precision=0
)
with gr.Row():
submit = gr.Button("Submit")
with gr.Row():
with gr.Box():
gr.Markdown("**ChatGLM2-6b**")
output_7b = gr.Markdown()
with gr.Row():
gr.Examples(
examples=examples,
inputs=[instruction],
cache_examples=False,
fn=process_stream,
outputs=output_7b,
)
submit.click(
process_stream,
inputs=[instruction, temperature, top_p, top_k, max_new_tokens,seed],
outputs=output_7b,
)
instruction.submit(
process_stream,
inputs=[instruction, temperature, top_p, top_k, max_new_tokens,seed],
outputs=output_7b,
)
demo.queue(max_size=4, concurrency_count=1).launch(debug=True)
|