File size: 21,683 Bytes
91fb4ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# Copyright 2024 The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
from glob import glob
import math
import os
import torch.nn.functional as F
import numpy as np
from pathlib import Path
from typing import Any, Dict, Tuple, List

import torch
import wandb
from diffusers import FlowMatchEulerDiscreteScheduler, MochiPipeline, MochiTransformer3DModel
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from diffusers.training_utils import cast_training_params
from diffusers.utils import export_to_video
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from huggingface_hub import create_repo, upload_folder
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
from torch.utils.data import DataLoader
from tqdm.auto import tqdm


from args import get_args  # isort:skip
from dataset_simple import LatentEmbedDataset

import sys
from utils import print_memory, reset_memory  # isort:skip


# Taken from
# https://github.com/genmoai/mochi/blob/aba74c1b5e0755b1fa3343d9e4bd22e89de77ab1/demos/fine_tuner/train.py#L139
def get_cosine_annealing_lr_scheduler(
    optimizer: torch.optim.Optimizer,
    warmup_steps: int,
    total_steps: int,
):
    def lr_lambda(step):
        if step < warmup_steps:
            return float(step) / float(max(1, warmup_steps))
        else:
            return 0.5 * (1 + np.cos(np.pi * (step - warmup_steps) / (total_steps - warmup_steps)))

    return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)


def save_model_card(
    repo_id: str,
    videos=None,
    base_model: str = None,
    validation_prompt=None,
    repo_folder=None,
    fps=30,
):
    widget_dict = []
    if videos is not None and len(videos) > 0:
        for i, video in enumerate(videos):
            export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4"), fps=fps)
            widget_dict.append(
                {
                    "text": validation_prompt if validation_prompt else " ",
                    "output": {"url": f"final_video_{i}.mp4"},
                }
            )

    model_description = f"""
# Mochi-1 Preview LoRA Finetune

<Gallery />

## Model description

This is a lora finetune of the Mochi-1 preview model `{base_model}`.

The model was trained using [CogVideoX Factory](https://github.com/a-r-r-o-w/cogvideox-factory) - a repository containing memory-optimized training scripts for the CogVideoX and Mochi family of models using [TorchAO](https://github.com/pytorch/ao) and [DeepSpeed](https://github.com/microsoft/DeepSpeed). The scripts were adopted from [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py).

## Download model

[Download LoRA]({repo_id}/tree/main) in the Files & Versions tab.

## Usage

Requires the [🧨 Diffusers library](https://github.com/huggingface/diffusers) installed.

```py
from diffusers import MochiPipeline
from diffusers.utils import export_to_video
import torch 

pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview")
pipe.load_lora_weights("CHANGE_ME")
pipe.enable_model_cpu_offload()

with torch.autocast("cuda", torch.bfloat16):
    video = pipe(
        prompt="CHANGE_ME",
        guidance_scale=6.0,
        num_inference_steps=64,
        height=480,
        width=848,
        max_sequence_length=256,
        output_type="np"
    ).frames[0]
export_to_video(video)
```

For more details, including weighting, merging and fusing LoRAs, check the [documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) on loading LoRAs in diffusers.

"""
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        license="apache-2.0",
        base_model=base_model,
        prompt=validation_prompt,
        model_description=model_description,
        widget=widget_dict,
    )
    tags = [
        "text-to-video",
        "diffusers-training",
        "diffusers",
        "lora",
        "mochi-1-preview",
        "mochi-1-preview-diffusers",
        "template:sd-lora",
    ]

    model_card = populate_model_card(model_card, tags=tags)
    model_card.save(os.path.join(repo_folder, "README.md"))


def log_validation(
    pipe: MochiPipeline,
    args: Dict[str, Any],
    pipeline_args: Dict[str, Any],
    epoch,
    wandb_run: str = None,
    is_final_validation: bool = False,
):
    print(
        f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}."
    )
    phase_name = "test" if is_final_validation else "validation"

    if not args.enable_model_cpu_offload:
        pipe = pipe.to("cuda")

    # run inference
    generator = torch.manual_seed(args.seed) if args.seed else None

    videos = []
    with torch.autocast("cuda", torch.bfloat16, cache_enabled=False):
        for _ in range(args.num_validation_videos):
            video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0]
            videos.append(video)

    video_filenames = []
    for i, video in enumerate(videos):
        prompt = (
            pipeline_args["prompt"][:25]
            .replace(" ", "_")
            .replace(" ", "_")
            .replace("'", "_")
            .replace('"', "_")
            .replace("/", "_")
        )
        filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4")
        export_to_video(video, filename, fps=30)
        video_filenames.append(filename)

    if wandb_run:
        wandb.log(
            {
                phase_name: [
                    wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}", fps=30)
                    for i, filename in enumerate(video_filenames)
                ]
            }
        )

    return videos


# Adapted from the original code:
# https://github.com/genmoai/mochi/blob/aba74c1b5e0755b1fa3343d9e4bd22e89de77ab1/src/genmo/mochi_preview/pipelines.py#L578
def cast_dit(model, dtype):
    for name, module in model.named_modules():
        if isinstance(module, torch.nn.Linear):
            assert any(
                n in name for n in ["time_embed", "proj_out", "blocks", "norm_out"]
            ), f"Unexpected linear layer: {name}"
            module.to(dtype=dtype)
        elif isinstance(module, torch.nn.Conv2d):
            module.to(dtype=dtype)
    return model


def save_checkpoint(model, optimizer, lr_scheduler, global_step, checkpoint_path):
    lora_state_dict = get_peft_model_state_dict(model)
    torch.save(
        {
            "state_dict": lora_state_dict,
            "optimizer": optimizer.state_dict(),
            "lr_scheduler": lr_scheduler.state_dict(),
            "global_step": global_step,
        },
        checkpoint_path,
    )


class CollateFunction:
    def __init__(self, caption_dropout: float = None) -> None:
        self.caption_dropout = caption_dropout

    def __call__(self, samples: List[Tuple[dict, torch.Tensor]]) -> Dict[str, torch.Tensor]:
        ldists = torch.cat([data[0]["ldist"] for data in samples], dim=0)
        z = DiagonalGaussianDistribution(ldists).sample()
        assert torch.isfinite(z).all()

        # Sample noise which we will add to the samples.
        eps = torch.randn_like(z)
        sigma = torch.rand(z.shape[:1], device="cpu", dtype=torch.float32)

        prompt_embeds = torch.cat([data[1]["prompt_embeds"] for data in samples], dim=0)
        prompt_attention_mask = torch.cat([data[1]["prompt_attention_mask"] for data in samples], dim=0)
        if self.caption_dropout and random.random() < self.caption_dropout:
            prompt_embeds.zero_()
            prompt_attention_mask = prompt_attention_mask.long()
            prompt_attention_mask.zero_()
            prompt_attention_mask = prompt_attention_mask.bool()

        return dict(
            z=z, eps=eps, sigma=sigma, prompt_embeds=prompt_embeds, prompt_attention_mask=prompt_attention_mask
        )


def main(args):
    if not torch.cuda.is_available():
        raise ValueError("Not supported without CUDA.")

    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

    # Handle the repository creation
    if args.output_dir is not None:
        os.makedirs(args.output_dir, exist_ok=True)

    if args.push_to_hub:
        repo_id = create_repo(
            repo_id=args.hub_model_id or Path(args.output_dir).name,
            exist_ok=True,
        ).repo_id

    # Prepare models and scheduler
    transformer = MochiTransformer3DModel.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="transformer",
        revision=args.revision,
        variant=args.variant,
    )
    scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="scheduler"
    )

    transformer.requires_grad_(False)
    transformer.to("cuda")
    if args.gradient_checkpointing:
        transformer.enable_gradient_checkpointing()
    if args.cast_dit:
        transformer = cast_dit(transformer, torch.bfloat16)
    if args.compile_dit:
        transformer.compile()

    # now we will add new LoRA weights to the attention layers
    transformer_lora_config = LoraConfig(
        r=args.rank,
        lora_alpha=args.lora_alpha,
        init_lora_weights="gaussian",
        target_modules=args.target_modules,
    )
    transformer.add_adapter(transformer_lora_config)

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32 and torch.cuda.is_available():
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = args.learning_rate * args.train_batch_size
    # only upcast trainable parameters (LoRA) into fp32
    cast_training_params([transformer], dtype=torch.float32)

    # Prepare optimizer
    transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))
    num_trainable_parameters = sum(param.numel() for param in transformer_lora_parameters)
    optimizer = torch.optim.AdamW(transformer_lora_parameters, lr=args.learning_rate, weight_decay=args.weight_decay)

    # Dataset and DataLoader
    train_vids = list(sorted(glob(f"{args.data_root}/*.mp4")))
    train_vids = [v for v in train_vids if not v.endswith(".recon.mp4")]
    print(f"Found {len(train_vids)} training videos in {args.data_root}")
    assert len(train_vids) > 0, f"No training data found in {args.data_root}"

    collate_fn = CollateFunction(caption_dropout=args.caption_dropout)
    train_dataset = LatentEmbedDataset(train_vids, repeat=1)
    train_dataloader = DataLoader(
        train_dataset,
        collate_fn=collate_fn,
        batch_size=args.train_batch_size,
        num_workers=args.dataloader_num_workers,
        pin_memory=args.pin_memory,
    )

    # LR scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = len(train_dataloader)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_cosine_annealing_lr_scheduler(
        optimizer, warmup_steps=args.lr_warmup_steps, total_steps=args.max_train_steps
    )

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = len(train_dataloader)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    wandb_run = None
    if args.report_to == "wandb":
        tracker_name = args.tracker_name or "mochi-1-lora"
        wandb_run = wandb.init(project=tracker_name, config=vars(args))

    # Resume from checkpoint if specified
    if args.resume_from_checkpoint:
        checkpoint = torch.load(args.resume_from_checkpoint, map_location="cpu", weights_only=True)
        if "global_step" in checkpoint:
            global_step = checkpoint["global_step"]
        if "optimizer" in checkpoint:
            optimizer.load_state_dict(checkpoint["optimizer"])
        if "lr_scheduler" in checkpoint:
            lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])

        set_peft_model_state_dict(transformer, checkpoint["state_dict"])

        print(f"Resuming from checkpoint: {args.resume_from_checkpoint}")
        print(f"Resuming from global step: {global_step}")
    else:
        global_step = 0

    print("===== Memory before training =====")
    reset_memory("cuda")
    print_memory("cuda")

    # Train!
    total_batch_size = args.train_batch_size
    print("***** Running training *****")
    print(f"  Num trainable parameters = {num_trainable_parameters}")
    print(f"  Num examples = {len(train_dataset)}")
    print(f"  Num batches each epoch = {len(train_dataloader)}")
    print(f"  Num epochs = {args.num_train_epochs}")
    print(f"  Instantaneous batch size per device = {args.train_batch_size}")
    print(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    print(f"  Total optimization steps = {args.max_train_steps}")

    first_epoch = 0
    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=global_step,
        desc="Steps",
    )
    for epoch in range(first_epoch, args.num_train_epochs):
        transformer.train()

        for step, batch in enumerate(train_dataloader):
            with torch.no_grad():
                z = batch["z"].to("cuda")
                eps = batch["eps"].to("cuda")
                sigma = batch["sigma"].to("cuda")
                prompt_embeds = batch["prompt_embeds"].to("cuda")
                prompt_attention_mask = batch["prompt_attention_mask"].to("cuda")

                sigma_bcthw = sigma[:, None, None, None, None]  # [B, 1, 1, 1, 1]
                # Add noise according to flow matching.
                # zt = (1 - texp) * x + texp * z1
                z_sigma = (1 - sigma_bcthw) * z + sigma_bcthw * eps
                ut = z - eps

                # (1 - sigma) because of
                # https://github.com/genmoai/mochi/blob/aba74c1b5e0755b1fa3343d9e4bd22e89de77ab1/src/genmo/mochi_preview/dit/joint_model/asymm_models_joint.py#L656
                # Also, we operate on the scaled version of the `timesteps` directly in the `diffusers` implementation.
                timesteps = (1 - sigma) * scheduler.config.num_train_timesteps

            with torch.autocast("cuda", torch.bfloat16):
                model_pred = transformer(
                    hidden_states=z_sigma,
                    encoder_hidden_states=prompt_embeds,
                    encoder_attention_mask=prompt_attention_mask,
                    timestep=timesteps,
                    return_dict=False,
                )[0]
            assert model_pred.shape == z.shape
            loss = F.mse_loss(model_pred.float(), ut.float())
            loss.backward()

            optimizer.step()
            optimizer.zero_grad()
            lr_scheduler.step()

            progress_bar.update(1)
            global_step += 1

            last_lr = lr_scheduler.get_last_lr()[0] if lr_scheduler is not None else args.learning_rate
            logs = {"loss": loss.detach().item(), "lr": last_lr}
            progress_bar.set_postfix(**logs)
            if wandb_run:
                wandb_run.log(logs, step=global_step)

            if args.checkpointing_steps is not None and global_step % args.checkpointing_steps == 0:
                print(f"Saving checkpoint at step {global_step}")
                checkpoint_path = os.path.join(args.output_dir, f"checkpoint-{global_step}.pt")
                save_checkpoint(
                    transformer,
                    optimizer,
                    lr_scheduler,
                    global_step,
                    checkpoint_path,
                )

            if global_step >= args.max_train_steps:
                break

        if global_step >= args.max_train_steps:
            break

        if args.validation_prompt is not None and (epoch + 1) % args.validation_epochs == 0:
            print("===== Memory before validation =====")
            print_memory("cuda")

            transformer.eval()
            pipe = MochiPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                transformer=transformer,
                scheduler=scheduler,
                revision=args.revision,
                variant=args.variant,
            )

            if args.enable_slicing:
                pipe.vae.enable_slicing()
            if args.enable_tiling:
                pipe.vae.enable_tiling()
            if args.enable_model_cpu_offload:
                pipe.enable_model_cpu_offload()

            validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
            for validation_prompt in validation_prompts:
                pipeline_args = {
                    "prompt": validation_prompt,
                    "guidance_scale": 6.0,
                    "num_inference_steps": 64,
                    "height": args.height,
                    "width": args.width,
                    "max_sequence_length": 256,
                }
                log_validation(
                    pipe=pipe,
                    args=args,
                    pipeline_args=pipeline_args,
                    epoch=epoch,
                    wandb_run=wandb_run,
                )

            print("===== Memory after validation =====")
            print_memory("cuda")
            reset_memory("cuda")

            del pipe.text_encoder
            del pipe.vae
            del pipe
            gc.collect()
            torch.cuda.empty_cache()

            transformer.train()

    transformer.eval()
    transformer_lora_layers = get_peft_model_state_dict(transformer)
    MochiPipeline.save_lora_weights(save_directory=args.output_dir, transformer_lora_layers=transformer_lora_layers)

    # Cleanup trained models to save memory
    del transformer

    gc.collect()
    torch.cuda.empty_cache()

    # Final test inference
    validation_outputs = []
    if args.validation_prompt and args.num_validation_videos > 0:
        print("===== Memory before testing =====")
        print_memory("cuda")
        reset_memory("cuda")

        pipe = MochiPipeline.from_pretrained(
            args.pretrained_model_name_or_path,
            revision=args.revision,
            variant=args.variant,
        )

        if args.enable_slicing:
            pipe.vae.enable_slicing()
        if args.enable_tiling:
            pipe.vae.enable_tiling()
        if args.enable_model_cpu_offload:
            pipe.enable_model_cpu_offload()

        # Load LoRA weights
        lora_scaling = args.lora_alpha / args.rank
        pipe.load_lora_weights(args.output_dir, adapter_name="mochi-lora")
        pipe.set_adapters(["mochi-lora"], [lora_scaling])

        # Run inference
        validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
        for validation_prompt in validation_prompts:
            pipeline_args = {
                "prompt": validation_prompt,
                "guidance_scale": 6.0,
                "num_inference_steps": 64,
                "height": args.height,
                "width": args.width,
                "max_sequence_length": 256,
            }

            video = log_validation(
                pipe=pipe,
                args=args,
                pipeline_args=pipeline_args,
                epoch=epoch,
                wandb_run=wandb_run,
                is_final_validation=True,
            )
            validation_outputs.extend(video)

        print("===== Memory after testing =====")
        print_memory("cuda")
        reset_memory("cuda")
        torch.cuda.synchronize("cuda")

    if args.push_to_hub:
        save_model_card(
            repo_id,
            videos=validation_outputs,
            base_model=args.pretrained_model_name_or_path,
            validation_prompt=args.validation_prompt,
            repo_folder=args.output_dir,
            fps=args.fps,
        )
        upload_folder(
            repo_id=repo_id,
            folder_path=args.output_dir,
            commit_message="End of training",
            ignore_patterns=["*.bin"],
        )
        print(f"Params pushed to {repo_id}.")


if __name__ == "__main__":
    args = get_args()
    main(args)