Yuanshi's picture
Upload 61 files
fb6a167 verified
raw
history blame contribute delete
11.4 kB
from PIL import Image, ImageFilter, ImageDraw
import cv2
import numpy as np
from torch.utils.data import Dataset
import torchvision.transforms as T
import random
class Subject200KDataset(Dataset):
def __init__(
self,
base_dataset,
condition_size: int = 512,
target_size: int = 512,
image_size: int = 512,
padding: int = 0,
condition_type: str = "subject",
drop_text_prob: float = 0.1,
drop_image_prob: float = 0.1,
return_pil_image: bool = False,
):
self.base_dataset = base_dataset
self.condition_size = condition_size
self.target_size = target_size
self.image_size = image_size
self.padding = padding
self.condition_type = condition_type
self.drop_text_prob = drop_text_prob
self.drop_image_prob = drop_image_prob
self.return_pil_image = return_pil_image
self.to_tensor = T.ToTensor()
def __len__(self):
return len(self.base_dataset) * 2
def __getitem__(self, idx):
# If target is 0, left image is target, right image is condition
target = idx % 2
item = self.base_dataset[idx // 2]
# Crop the image to target and condition
image = item["image"]
left_img = image.crop(
(
self.padding,
self.padding,
self.image_size + self.padding,
self.image_size + self.padding,
)
)
right_img = image.crop(
(
self.image_size + self.padding * 2,
self.padding,
self.image_size * 2 + self.padding * 2,
self.image_size + self.padding,
)
)
# Get the target and condition image
target_image, condition_img = (
(left_img, right_img) if target == 0 else (right_img, left_img)
)
# Resize the image
condition_img = condition_img.resize(
(self.condition_size, self.condition_size)
).convert("RGB")
target_image = target_image.resize(
(self.target_size, self.target_size)
).convert("RGB")
# Get the description
description = item["description"][
"description_0" if target == 0 else "description_1"
]
# Randomly drop text or image
drop_text = random.random() < self.drop_text_prob
drop_image = random.random() < self.drop_image_prob
if drop_text:
description = ""
if drop_image:
condition_img = Image.new(
"RGB", (self.condition_size, self.condition_size), (0, 0, 0)
)
return {
"image": self.to_tensor(target_image),
"condition": self.to_tensor(condition_img),
"condition_type": self.condition_type,
"description": description,
# 16 is the downscale factor of the image
"position_delta": np.array([0, -self.condition_size // 16]),
**({"pil_image": image} if self.return_pil_image else {}),
}
class ImageConditionDataset(Dataset):
def __init__(
self,
base_dataset,
condition_size: int = 512,
target_size: int = 512,
condition_type: str = "canny",
drop_text_prob: float = 0.1,
drop_image_prob: float = 0.1,
return_pil_image: bool = False,
position_scale=1.0,
):
self.base_dataset = base_dataset
self.condition_size = condition_size
self.target_size = target_size
self.condition_type = condition_type
self.drop_text_prob = drop_text_prob
self.drop_image_prob = drop_image_prob
self.return_pil_image = return_pil_image
self.position_scale = position_scale
self.to_tensor = T.ToTensor()
def __len__(self):
return len(self.base_dataset)
@property
def depth_pipe(self):
if not hasattr(self, "_depth_pipe"):
from transformers import pipeline
self._depth_pipe = pipeline(
task="depth-estimation",
model="LiheYoung/depth-anything-small-hf",
device="cpu",
)
return self._depth_pipe
def _get_canny_edge(self, img):
resize_ratio = self.condition_size / max(img.size)
img = img.resize(
(int(img.size[0] * resize_ratio), int(img.size[1] * resize_ratio))
)
img_np = np.array(img)
img_gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
edges = cv2.Canny(img_gray, 100, 200)
return Image.fromarray(edges).convert("RGB")
def __getitem__(self, idx):
image = self.base_dataset[idx]["jpg"]
image = image.resize((self.target_size, self.target_size)).convert("RGB")
description = self.base_dataset[idx]["json"]["prompt"]
enable_scale = random.random() < 1
if not enable_scale:
condition_size = int(self.condition_size * self.position_scale)
position_scale = 1.0
else:
condition_size = self.condition_size
position_scale = self.position_scale
# Get the condition image
position_delta = np.array([0, 0])
if self.condition_type == "canny":
condition_img = self._get_canny_edge(image)
elif self.condition_type == "coloring":
condition_img = (
image.resize((condition_size, condition_size))
.convert("L")
.convert("RGB")
)
elif self.condition_type == "deblurring":
blur_radius = random.randint(1, 10)
condition_img = (
image.convert("RGB")
.filter(ImageFilter.GaussianBlur(blur_radius))
.resize((condition_size, condition_size))
.convert("RGB")
)
elif self.condition_type == "depth":
condition_img = self.depth_pipe(image)["depth"].convert("RGB")
condition_img = condition_img.resize((condition_size, condition_size))
elif self.condition_type == "depth_pred":
condition_img = image
image = self.depth_pipe(condition_img)["depth"].convert("RGB")
description = f"[depth] {description}"
elif self.condition_type == "fill":
condition_img = image.resize((condition_size, condition_size)).convert(
"RGB"
)
w, h = image.size
x1, x2 = sorted([random.randint(0, w), random.randint(0, w)])
y1, y2 = sorted([random.randint(0, h), random.randint(0, h)])
mask = Image.new("L", image.size, 0)
draw = ImageDraw.Draw(mask)
draw.rectangle([x1, y1, x2, y2], fill=255)
if random.random() > 0.5:
mask = Image.eval(mask, lambda a: 255 - a)
condition_img = Image.composite(
image, Image.new("RGB", image.size, (0, 0, 0)), mask
)
elif self.condition_type == "sr":
condition_img = image.resize((condition_size, condition_size)).convert(
"RGB"
)
position_delta = np.array([0, -condition_size // 16])
else:
raise ValueError(f"Condition type {self.condition_type} not implemented")
# Randomly drop text or image
drop_text = random.random() < self.drop_text_prob
drop_image = random.random() < self.drop_image_prob
if drop_text:
description = ""
if drop_image:
condition_img = Image.new(
"RGB", (condition_size, condition_size), (0, 0, 0)
)
return {
"image": self.to_tensor(image),
"condition": self.to_tensor(condition_img),
"condition_type": self.condition_type,
"description": description,
"position_delta": position_delta,
**({"pil_image": [image, condition_img]} if self.return_pil_image else {}),
**({"position_scale": position_scale} if position_scale != 1.0 else {}),
}
class CartoonDataset(Dataset):
def __init__(
self,
base_dataset,
condition_size: int = 1024,
target_size: int = 1024,
image_size: int = 1024,
padding: int = 0,
condition_type: str = "cartoon",
drop_text_prob: float = 0.1,
drop_image_prob: float = 0.1,
return_pil_image: bool = False,
):
self.base_dataset = base_dataset
self.condition_size = condition_size
self.target_size = target_size
self.image_size = image_size
self.padding = padding
self.condition_type = condition_type
self.drop_text_prob = drop_text_prob
self.drop_image_prob = drop_image_prob
self.return_pil_image = return_pil_image
self.to_tensor = T.ToTensor()
def __len__(self):
return len(self.base_dataset)
def __getitem__(self, idx):
data = self.base_dataset[idx]
condition_img = data["condition"]
target_image = data["target"]
# Tag
tag = data["tags"][0]
target_description = data["target_description"]
description = {
"lion": "lion like animal",
"bear": "bear like animal",
"gorilla": "gorilla like animal",
"dog": "dog like animal",
"elephant": "elephant like animal",
"eagle": "eagle like bird",
"tiger": "tiger like animal",
"owl": "owl like bird",
"woman": "woman",
"parrot": "parrot like bird",
"mouse": "mouse like animal",
"man": "man",
"pigeon": "pigeon like bird",
"girl": "girl",
"panda": "panda like animal",
"crocodile": "crocodile like animal",
"rabbit": "rabbit like animal",
"boy": "boy",
"monkey": "monkey like animal",
"cat": "cat like animal",
}
# Resize the image
condition_img = condition_img.resize(
(self.condition_size, self.condition_size)
).convert("RGB")
target_image = target_image.resize(
(self.target_size, self.target_size)
).convert("RGB")
# Process datum to create description
description = data.get(
"description",
f"Photo of a {description[tag]} cartoon character in a white background. Character is facing {target_description['facing_direction']}. Character pose is {target_description['pose']}.",
)
# Randomly drop text or image
drop_text = random.random() < self.drop_text_prob
drop_image = random.random() < self.drop_image_prob
if drop_text:
description = ""
if drop_image:
condition_img = Image.new(
"RGB", (self.condition_size, self.condition_size), (0, 0, 0)
)
return {
"image": self.to_tensor(target_image),
"condition": self.to_tensor(condition_img),
"condition_type": self.condition_type,
"description": description,
# 16 is the downscale factor of the image
"position_delta": np.array([0, -16]),
}