# Copyright (c) 2023-2024, Zexin He # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import traceback import os import time import math import argparse import shutil import torch import safetensors from omegaconf import OmegaConf from abc import abstractmethod from contextlib import contextmanager from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed import cv2 import numpy as np from lam.utils.logging import configure_logger from lam.utils.compile import configure_dynamo from lam.runners.abstract import Runner logger = get_logger(__name__) def parse_configs(): # Define argparse arguments parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, default='./assets/config.yaml') parser.add_argument('--resume', type=str, default='') args, unknown = parser.parse_known_args() # Load configuration file cfg = OmegaConf.load(args.config) # Override with command-line arguments cli_cfg = OmegaConf.from_cli(unknown) cfg = OmegaConf.merge(cfg, cli_cfg) if len(args.resume) > 0: cfg.train.resume = args.resume return cfg class Trainer(Runner): def __init__(self): super().__init__() self.cfg = parse_configs() self.has_disc = self.cfg.model.has_disc if hasattr(self.cfg.model, "has_disc") else False self.timestamp = time.strftime("%Y%m%d-%H%M%S") self.accelerator = Accelerator( mixed_precision=self.cfg.train.mixed_precision, gradient_accumulation_steps=self.cfg.train.accum_steps, log_with=tuple(self.cfg.logger.trackers), project_config=ProjectConfiguration( logging_dir=self.cfg.logger.tracker_root, ), use_seedable_sampler=True, kwargs_handlers=[ DistributedDataParallelKwargs( find_unused_parameters=self.cfg.train.find_unused_parameters, ), ], ) self.weight_dtype = self.get_weight_dtype() print(f"weight_dtype:{self.weight_dtype}") set_seed(self.cfg.experiment.seed, device_specific=True) with self.accelerator.main_process_first(): configure_logger( stream_level=self.cfg.logger.stream_level, log_level=self.cfg.logger.log_level, file_path=os.path.join( self.cfg.logger.log_root, self.cfg.experiment.parent, self.cfg.experiment.child, f"{self.timestamp}.log", ) if self.accelerator.is_main_process else None, ) logger.info(self.accelerator.state, main_process_only=False, in_order=True) configure_dynamo(dict(self.cfg.compile)) # attributes with defaults self.model : torch.nn.Module = None self.optimizer: torch.optim.Optimizer = None self.scheduler: torch.optim.lr_scheduler.LRScheduler = None self.train_loader: torch.utils.data.DataLoader = None self.val_loader: torch.utils.data.DataLoader = None self.N_max_global_steps: int = None self.N_global_steps_per_epoch: int = None self.global_step: int = 0 self.current_epoch: int = 0 def __enter__(self): self.accelerator.init_trackers( project_name=f"{self.cfg.experiment.parent}/{self.cfg.experiment.child}", ) self.prepare_everything() self.log_inital_info() #self.accelerator.trackers[0].logging_dir self.trackers_logging_dir = f"{self.cfg.logger.tracker_root}/{self.cfg.experiment.parent}/{self.cfg.experiment.child}" os.makedirs(self.trackers_logging_dir, exist_ok=True) self.snapshot_cfg(self.cfg) return self def get_weight_dtype(self): weight_dtype = torch.float32 if self.accelerator.mixed_precision == "fp16": weight_dtype = torch.float16 elif self.accelerator.mixed_precision == "bf16": weight_dtype = torch.bfloat16 elif self.accelerator.mixed_precision == "no": weight_dtype = torch.float32 else: raise NotImplementedError return weight_dtype def __exit__(self, exc_type, exc_val, exc_tb): self.accelerator.end_training() @staticmethod def control(option: str = None, synchronized: bool = False): def decorator(func): def wrapper(self, *args, **kwargs): if option is None or hasattr(self.accelerator, option): accelerated_func = getattr(self.accelerator, option)(func) if option is not None else func result = accelerated_func(self, *args, **kwargs) if synchronized: self.accelerator.wait_for_everyone() return result else: raise AttributeError(f"Accelerator has no attribute {option}") return wrapper return decorator @contextmanager def exec_in_order(self): for rank in range(self.accelerator.num_processes): try: if self.accelerator.process_index == rank: yield finally: self.accelerator.wait_for_everyone() @property def device(self): return self.accelerator.device @property def is_distributed(self) -> bool: return self.accelerator.num_processes > 1 def prepare_everything(self, is_dist_validation: bool = True): # prepare with accelerator if is_dist_validation: if not self.has_disc: self.model, self.optimizer, self.train_loader, self.val_loader = \ self.accelerator.prepare( self.model, self.optimizer, self.train_loader, self.val_loader, ) else: self.model, self.model_disc, self.optimizer, self.optimizer_disc, self.train_loader, self.val_loader = \ self.accelerator.prepare( self.model, self.model_disc, self.optimizer, self.optimizer_disc, self.train_loader, self.val_loader, ) else: if not self.has_disc: self.model, self.optimizer, self.train_loader = \ self.accelerator.prepare( self.model, self.optimizer, self.train_loader, ) else: self.model, self.model_disc, self.optimizer, self.optimizer_disc, self.train_loader = \ self.accelerator.prepare( self.model, self.model_disc, self.optimizer, self.optimizer_disc, self.train_loader, ) self.accelerator.register_for_checkpointing(self.scheduler) if self.has_disc: self.accelerator.register_for_checkpointing(self.scheduler_disc) # prepare stats N_total_batch_size = self.cfg.train.batch_size * self.accelerator.num_processes * self.cfg.train.accum_steps self.N_global_steps_per_epoch = math.ceil(len(self.train_loader) / self.cfg.train.accum_steps) self.N_max_global_steps = self.N_global_steps_per_epoch * self.cfg.train.epochs if self.cfg.train.debug_global_steps is not None: logger.warning(f"Overriding max global steps from {self.N_max_global_steps} to {self.cfg.train.debug_global_steps}") self.N_max_global_steps = self.cfg.train.debug_global_steps print(f"======== Trainable parameters ========") print(f"** Total: {sum(p.numel() for p in self.model.parameters() if p.requires_grad) / 1e6}M") logger.info(f"======== Statistics ========") logger.info(f"** N_max_global_steps: {self.N_max_global_steps}") logger.info(f"** N_total_batch_size: {N_total_batch_size}") logger.info(f"** N_epochs: {self.cfg.train.epochs}") logger.info(f"** N_global_steps_per_epoch: {self.N_global_steps_per_epoch}") logger.debug(f"** Prepared loader length: {len(self.train_loader)}") logger.info(f"** Distributed validation: {is_dist_validation}") logger.info(f"============================") logger.info(f"======== Trainable parameters ========") logger.info(f"** Total: {sum(p.numel() for p in self.model.parameters() if p.requires_grad)}") for sub_name, sub_module in self.accelerator.unwrap_model(self.model).named_children(): logger.info(f"** {sub_name}: {sum(p.numel() for p in sub_module.parameters() if p.requires_grad)}") logger.info(f"=====================================") self.accelerator.wait_for_everyone() # load checkpoint or model self.load_ckpt_or_auto_resume_(self.cfg) # register hooks self.register_hooks() @abstractmethod def register_hooks(self): pass def auto_resume_(self, cfg, ckpt_root=None) -> bool: if ckpt_root is None: ckpt_root = os.path.join( cfg.saver.checkpoint_root, cfg.experiment.parent, cfg.experiment.child, ) if not os.path.exists(ckpt_root): return False ckpt_dirs = os.listdir(ckpt_root) if len(ckpt_dirs) == 0: return False ckpt_dirs.sort() latest_ckpt = ckpt_dirs[-1] latest_ckpt_dir = os.path.join(ckpt_root, latest_ckpt) logger.info(f"======== Auto-resume from {latest_ckpt_dir} ========") self.accelerator.load_state(latest_ckpt_dir) self.global_step = int(latest_ckpt) self.current_epoch = self.global_step // self.N_global_steps_per_epoch return True def load_model_(self, cfg): logger.info(f"======== Loading model from {cfg.saver.load_model} ========") # model = self.accelerator.unwrap_model(self.model) # state_dict = safetensors.torch.load_file(cfg.saver.load_model, device='cpu') # state_dict.pop('pcl_embeddings.weight') # model_state_dict = model.state_dict() # missing, unexpected = model.load_state_dict(state_dict, strict=False) # missing = set(missing) # print("missing:", missing) # print("unexpected:", unexpected) try: safetensors.torch.load_model( self.accelerator.unwrap_model(self.model), cfg.saver.load_model, strict=cfg.saver.load_model_strict if hasattr(cfg.saver, "load_model_strict") else True, ) except: traceback.print_exc() model = self.accelerator.unwrap_model(self.model) model_state_dict = model.state_dict() state_dict = safetensors.torch.load_file(cfg.saver.load_model, device='cpu') for key in list(state_dict): if "renderer.flame_model" in key: print(f"pop:{key}, shape:{state_dict[key].shape}") state_dict.pop(key) if "renderer.flame_model" in key: print(f"pop:{key}, shape:{state_dict[key].shape}") state_dict.pop(key) if "renderer.gs_net.out_layers.scaling.weight" == key: if state_dict["renderer.gs_net.out_layers.scaling.weight"].shape != model_state_dict["renderer.gs_net.out_layers.scaling.weight"].shape: # state_dict["renderer.gs_net.out_layers.scaling.weight"] = state_dict["renderer.gs_net.out_layers.scaling.weight"][:1] # state_dict["renderer.gs_net.out_layers.scaling.bias"] = state_dict["renderer.gs_net.out_layers.scaling.bias"][:1] state_dict.pop("renderer.gs_net.out_layers.scaling.weight") state_dict.pop("renderer.gs_net.out_layers.scaling.bias") missing, unexpected = model.load_state_dict(state_dict, strict=False) missing = set(missing) print("missing:", missing) print("unexpected:", unexpected) if self.has_disc and cfg.saver.get("load_model_disc", None) is not None: safetensors.torch.load_model( self.accelerator.unwrap_model(self.model_disc), cfg.saver.load_model_disc, strict=cfg.saver.load_model_strict if hasattr(cfg.saver, "load_model_strict") else True, ) logger.info(f"======== Model loaded ========") @control(synchronized=True) def load_ckpt_or_auto_resume_(self, cfg): # auto resume has higher priority, load model from path if auto resume is not available # cfg.saver.auto_resume and cfg.saver.load_model if hasattr(cfg.saver, "load_ckpt") and cfg.saver.load_ckpt: successful_resume = self.auto_resume_(cfg, ckpt_root=cfg.saver.load_ckpt) if successful_resume: return if cfg.saver.auto_resume: successful_resume = self.auto_resume_(cfg) if successful_resume: return if cfg.saver.load_model: successful_load = self.load_model_(cfg) if successful_load: return logger.debug(f"======== No checkpoint or model is loaded ========") # @control('on_main_process', synchronized=True) def _save_checkpoint(self): ckpt_dir = os.path.join( self.cfg.saver.checkpoint_root, self.cfg.experiment.parent, self.cfg.experiment.child, f"{self.global_step:06d}", ) self.accelerator.save_state(output_dir=ckpt_dir, safe_serialization=True) logger.info(f"======== Saved checkpoint at global step {self.global_step} ========") # manage stratified checkpoints ckpt_dirs = os.listdir(os.path.dirname(ckpt_dir)) ckpt_dirs.sort() max_ckpt = int(ckpt_dirs[-1]) ckpt_base = int(self.cfg.saver.checkpoint_keep_level) ckpt_period = self.cfg.saver.checkpoint_global_steps logger.debug(f"Checkpoint base: {ckpt_base}") logger.debug(f"Checkpoint period: {ckpt_period}") cur_order = ckpt_base ** math.floor(math.log(max_ckpt // ckpt_period, ckpt_base)) cur_idx = 0 while cur_order > 0: cur_digit = max_ckpt // ckpt_period // cur_order % ckpt_base while cur_idx < len(ckpt_dirs) and int(ckpt_dirs[cur_idx]) // ckpt_period // cur_order % ckpt_base < cur_digit: if int(ckpt_dirs[cur_idx]) // ckpt_period % cur_order != 0: shutil.rmtree(os.path.join(os.path.dirname(ckpt_dir), ckpt_dirs[cur_idx])) logger.info(f"Removed checkpoint {ckpt_dirs[cur_idx]}") cur_idx += 1 cur_order //= ckpt_base def save_checkpoint(self): if self.accelerator.state.deepspeed_plugin is not None: logger.info("deepspeed mode to save ckpt...............") self._save_checkpoint() else: if self.accelerator.is_main_process: self._save_checkpoint() @control('on_main_process') def snapshot_cfg(self, cfg): # save_path=os.path.join(self.accelerator.trackers[0].logging_dir, "config.yaml") save_path=os.path.join(self.trackers_logging_dir, "config.yaml") OmegaConf.save(cfg, save_path) @property def global_step_in_epoch(self): return self.global_step % self.N_global_steps_per_epoch @abstractmethod def _build_model(self): pass @abstractmethod def _build_optimizer(self): pass @abstractmethod def _build_scheduler(self): pass @abstractmethod def _build_dataloader(self): pass @abstractmethod def _build_loss_fn(self): pass @abstractmethod def train(self): pass @abstractmethod def evaluate(self): pass @staticmethod def _get_str_progress(epoch: int = None, step: int = None): if epoch is not None: log_type = 'epoch' log_progress = epoch elif step is not None: log_type = 'step' log_progress = step else: raise ValueError('Either epoch or step must be provided') return log_type, log_progress @control('on_main_process') def log_scalar_kwargs(self, epoch: int = None, step: int = None, split: str = None, **scalar_kwargs): log_type, log_progress = self._get_str_progress(epoch, step) split = f'/{split}' if split else '' for key, value in scalar_kwargs.items(): self.accelerator.log({f'{key}{split}/{log_type}': value}, log_progress) def log_images_each_process(self, values: dict, step: int | None = None, log_kwargs: dict | None = {}): for tracker in self.accelerator.trackers: if hasattr(tracker, 'log_images'): tracker.log_images(values, step=step, **log_kwargs.get(tracker.name, {})) # log_dir = tracker.logging_dir log_dir = self.trackers_logging_dir if log_kwargs.get("imwrite_image", True): for k, v in values.items(): v = v[0].permute(1, 2, 0).detach().cpu().numpy() save_path = os.path.join(log_dir, f"{step:05d}_{k.replace('/', '_')}.jpg") # print(save_path) cv2.imwrite(save_path, (v * 255).astype(np.uint8)[:, :, (2, 1, 0)]) @control('on_main_process') def log_images(self, values: dict, step: int | None = None, log_kwargs: dict | None = {}): self.log_images_each_process(values, step, log_kwargs) @control('on_main_process') def log_optimizer(self, epoch: int = None, step: int = None, attrs: list[str] = [], group_ids: list[int] = []): log_type, log_progress = self._get_str_progress(epoch, step) assert self.optimizer is not None, 'Optimizer is not initialized' if not attrs: logger.warning('No optimizer attributes are provided, nothing will be logged') if not group_ids: logger.warning('No optimizer group ids are provided, nothing will be logged') for attr in attrs: assert attr in ['lr', 'momentum', 'weight_decay'], f'Invalid optimizer attribute {attr}' for group_id in group_ids: self.accelerator.log({f'opt/{attr}/{group_id}': self.optimizer.param_groups[group_id][attr]}, log_progress) @control('on_main_process') def log_inital_info(self): assert self.model is not None, 'Model is not initialized' assert self.optimizer is not None, 'Optimizer is not initialized' assert self.scheduler is not None, 'Scheduler is not initialized' self.accelerator.log({'Config': "```\n" + OmegaConf.to_yaml(self.cfg) + "\n```"}) self.accelerator.log({'Model': "```\n" + str(self.model) + "\n```"}) self.accelerator.log({'Optimizer': "```\n" + str(self.optimizer) + "\n```"}) self.accelerator.log({'Scheduler': "```\n" + str(self.scheduler) + "\n```"}) def run(self): self.train()